M. S. Oliveira, F. S. Luz, A. M. Lima, Foluke Salgado de Assis, A. Pereira, Fábio de Oliveira Braga, S. Monteiro, A. B. S. Figueiredo
{"title":"热老化及石墨烯纳米片功能化环氧基对纤维纤维增强复合材料的影响","authors":"M. S. Oliveira, F. S. Luz, A. M. Lima, Foluke Salgado de Assis, A. Pereira, Fábio de Oliveira Braga, S. Monteiro, A. B. S. Figueiredo","doi":"10.4322/2176-1523.20222758","DOIUrl":null,"url":null,"abstract":"Currently, the demand for high quality and reliable components and materials is increasing, so bending testing has become a vital test method, both in research and manufacturing and development process, to explain in detail about the material’s ability to withstand deformation under load. This research investigated flexural properties of polymeric composites reinforced with natural fiber, in particular the fique fabric, with addition of graphene nanoplates (GNP) (0.1%; 0.5% and 0.9%) and degradation at high temperature (0, 5 and 10 days), as it was never reported. Using design of experiments (DoE), ie, 3-full factorial design with two replications, aiming to analyze the effects of important parameters, which are exposure time and GNP addition percentage. The output response measurement was identified as deflection at fracture, modulus of rupture and elasticity values. Randomized experiments were conducted based on table generated via Minitab 19 software. Scanning electron microscopy analysis confirmed the main influences on flexural analysis responses.","PeriodicalId":53327,"journal":{"name":"Tecnologia em Metalurgia Materiais e Mineracao","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of thermal aging and functionalized epoxy matrix with graphene nanoplates in fique fabric-reinforced composites\",\"authors\":\"M. S. Oliveira, F. S. Luz, A. M. Lima, Foluke Salgado de Assis, A. Pereira, Fábio de Oliveira Braga, S. Monteiro, A. B. S. Figueiredo\",\"doi\":\"10.4322/2176-1523.20222758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, the demand for high quality and reliable components and materials is increasing, so bending testing has become a vital test method, both in research and manufacturing and development process, to explain in detail about the material’s ability to withstand deformation under load. This research investigated flexural properties of polymeric composites reinforced with natural fiber, in particular the fique fabric, with addition of graphene nanoplates (GNP) (0.1%; 0.5% and 0.9%) and degradation at high temperature (0, 5 and 10 days), as it was never reported. Using design of experiments (DoE), ie, 3-full factorial design with two replications, aiming to analyze the effects of important parameters, which are exposure time and GNP addition percentage. The output response measurement was identified as deflection at fracture, modulus of rupture and elasticity values. Randomized experiments were conducted based on table generated via Minitab 19 software. Scanning electron microscopy analysis confirmed the main influences on flexural analysis responses.\",\"PeriodicalId\":53327,\"journal\":{\"name\":\"Tecnologia em Metalurgia Materiais e Mineracao\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tecnologia em Metalurgia Materiais e Mineracao\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4322/2176-1523.20222758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tecnologia em Metalurgia Materiais e Mineracao","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4322/2176-1523.20222758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of thermal aging and functionalized epoxy matrix with graphene nanoplates in fique fabric-reinforced composites
Currently, the demand for high quality and reliable components and materials is increasing, so bending testing has become a vital test method, both in research and manufacturing and development process, to explain in detail about the material’s ability to withstand deformation under load. This research investigated flexural properties of polymeric composites reinforced with natural fiber, in particular the fique fabric, with addition of graphene nanoplates (GNP) (0.1%; 0.5% and 0.9%) and degradation at high temperature (0, 5 and 10 days), as it was never reported. Using design of experiments (DoE), ie, 3-full factorial design with two replications, aiming to analyze the effects of important parameters, which are exposure time and GNP addition percentage. The output response measurement was identified as deflection at fracture, modulus of rupture and elasticity values. Randomized experiments were conducted based on table generated via Minitab 19 software. Scanning electron microscopy analysis confirmed the main influences on flexural analysis responses.