亨廷顿氏病纹状体功能受损是由于p75NTR信号异常

Joshua L. Plotkin, D. Surmeier
{"title":"亨廷顿氏病纹状体功能受损是由于p75NTR信号异常","authors":"Joshua L. Plotkin, D. Surmeier","doi":"10.4161/2167549X.2014.968482","DOIUrl":null,"url":null,"abstract":"Huntington's disease (HD) is a rare genetic neurodegenerative disorder for which there is currently no cure. Early hyperkinetic motor symptoms are consistent with reduced activity of indirect pathway striatal projection neurons (iSPNs) responsible for suppression of unwanted actions. Our recent work suggests that one of the factors contributing to this deficit is impaired brain-derived neurotrophic factor (BDNF) signaling that regulates the strength of iSPN excitatory synapses. Specifically, we found that BDNF-dependent corticostriatal synaptic long-term potentiation (LTP) was lost in iSPNs from 2 genetic models of HD, just as they began to robustly manifest motor symptoms. This deficit was not attributable to problems in BDNF production, delivery or receptor binding. Rather, the plasticity deficit stemmed from enhanced signaling through p75 neurotrophin receptors (p75NTRs) and the phosphatase and tensin homolog (PTEN), leading to antagonism of intracellular TrkBR cascades and LTP. This study suggests HD therapeutics should target p75NTR signaling, not TrkBR.","PeriodicalId":74639,"journal":{"name":"Rare diseases (Austin, Tex.)","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/2167549X.2014.968482","citationCount":"9","resultStr":"{\"title\":\"Impaired striatal function in Huntington's disease is due to aberrant p75NTR signaling\",\"authors\":\"Joshua L. Plotkin, D. Surmeier\",\"doi\":\"10.4161/2167549X.2014.968482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Huntington's disease (HD) is a rare genetic neurodegenerative disorder for which there is currently no cure. Early hyperkinetic motor symptoms are consistent with reduced activity of indirect pathway striatal projection neurons (iSPNs) responsible for suppression of unwanted actions. Our recent work suggests that one of the factors contributing to this deficit is impaired brain-derived neurotrophic factor (BDNF) signaling that regulates the strength of iSPN excitatory synapses. Specifically, we found that BDNF-dependent corticostriatal synaptic long-term potentiation (LTP) was lost in iSPNs from 2 genetic models of HD, just as they began to robustly manifest motor symptoms. This deficit was not attributable to problems in BDNF production, delivery or receptor binding. Rather, the plasticity deficit stemmed from enhanced signaling through p75 neurotrophin receptors (p75NTRs) and the phosphatase and tensin homolog (PTEN), leading to antagonism of intracellular TrkBR cascades and LTP. This study suggests HD therapeutics should target p75NTR signaling, not TrkBR.\",\"PeriodicalId\":74639,\"journal\":{\"name\":\"Rare diseases (Austin, Tex.)\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4161/2167549X.2014.968482\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare diseases (Austin, Tex.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4161/2167549X.2014.968482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare diseases (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4161/2167549X.2014.968482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

亨廷顿氏病(HD)是一种罕见的遗传性神经退行性疾病,目前尚无治愈方法。早期多动运动症状与负责抑制不良行为的间接通路纹状体投射神经元(ispn)活性降低一致。我们最近的研究表明,导致这种缺陷的因素之一是调节iSPN兴奋性突触强度的脑源性神经营养因子(BDNF)信号传导受损。具体来说,我们发现bdnf依赖性皮质纹状体突触长期增强(LTP)在2种HD遗传模型的ispn中丢失,就在他们开始强烈表现出运动症状时。这种缺陷不能归因于BDNF的产生、传递或受体结合的问题。相反,可塑性缺陷源于通过p75神经营养因子受体(p75NTRs)和磷酸酶和紧张素同源物(PTEN)增强的信号传导,导致细胞内TrkBR级联反应和LTP的拮抗。这项研究表明,HD治疗应该针对p75NTR信号,而不是TrkBR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impaired striatal function in Huntington's disease is due to aberrant p75NTR signaling
Huntington's disease (HD) is a rare genetic neurodegenerative disorder for which there is currently no cure. Early hyperkinetic motor symptoms are consistent with reduced activity of indirect pathway striatal projection neurons (iSPNs) responsible for suppression of unwanted actions. Our recent work suggests that one of the factors contributing to this deficit is impaired brain-derived neurotrophic factor (BDNF) signaling that regulates the strength of iSPN excitatory synapses. Specifically, we found that BDNF-dependent corticostriatal synaptic long-term potentiation (LTP) was lost in iSPNs from 2 genetic models of HD, just as they began to robustly manifest motor symptoms. This deficit was not attributable to problems in BDNF production, delivery or receptor binding. Rather, the plasticity deficit stemmed from enhanced signaling through p75 neurotrophin receptors (p75NTRs) and the phosphatase and tensin homolog (PTEN), leading to antagonism of intracellular TrkBR cascades and LTP. This study suggests HD therapeutics should target p75NTR signaling, not TrkBR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Primary Immunodeficiency Chronic Myeloid Leukemia Milestone Histories and Paradigmatic Genetic Discoveries of Chronic Myeloid Leukemia (CML) Duchenne Muscular Dystrophy (DMD) Diagnosis: Past and Present Perspectives Rare Disease Advocacy Groups and Their Significance in Diagnosis, Management, Treatment, and Prevention of Rare Diseases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1