基于PMSG的变速WTG动态建模与性能分析——以埃塞俄比亚Adama风电场I为例

IF 0.3 Q4 MULTIDISCIPLINARY SCIENCES Momona Ethiopian Journal of Science Pub Date : 2021-05-09 DOI:10.4314/MEJS.V12I2.1
Z. Muluneh, Gebremichael Teame
{"title":"基于PMSG的变速WTG动态建模与性能分析——以埃塞俄比亚Adama风电场I为例","authors":"Z. Muluneh, Gebremichael Teame","doi":"10.4314/MEJS.V12I2.1","DOIUrl":null,"url":null,"abstract":"In this paper, the performance of Permanent Magnet Synchronous Generator (PMSG) -based Variable Speed Wind Turbine Generator (WTG) at Adama Wind Farm I (WTG), connected to a grid is studied. To study the performance of the WTG, both machine and grid side converters are modeled and analyzed very well. On the machine side, maximum power point tracking (MPPT) for maximum energy extraction is done using the direct speed control (DSC) technique, which is linked with the optimal tip speed ratio for each wind speed value considered. On the grid side, dc-link voltage and reactive power flow to the grid are controlled. For this purpose, first, the simulation model of the system is prepared in MATLAB Simulink considering the dynamic mathematical model of the PMSG, and Wind Turbine Aerodynamic model using the user-defined function blocks. Then, the PI regulators designed for direct speed, torque (current) control, and dc-link voltage are employed in the model. Moreover, to study and analyze the behavior of the system in a variable speed operation, a wind speed starting from cut-in wind speed (3m/s) to the rated wind speed (11m/s) is applied in 4s. The simulation result of the existing system model shows that the actual values of performance variables correspond well with the analytical values of the system. In addition, the chosen control algorithms applied in the control system of the generator-side converter are hence verified.","PeriodicalId":18948,"journal":{"name":"Momona Ethiopian Journal of Science","volume":"12 1","pages":"155-172"},"PeriodicalIF":0.3000,"publicationDate":"2021-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Modeling and Performance Analysis of PMSG- based Variable Speed WTG: Case Study of Adama Wind Farm I, Ethiopia\",\"authors\":\"Z. Muluneh, Gebremichael Teame\",\"doi\":\"10.4314/MEJS.V12I2.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the performance of Permanent Magnet Synchronous Generator (PMSG) -based Variable Speed Wind Turbine Generator (WTG) at Adama Wind Farm I (WTG), connected to a grid is studied. To study the performance of the WTG, both machine and grid side converters are modeled and analyzed very well. On the machine side, maximum power point tracking (MPPT) for maximum energy extraction is done using the direct speed control (DSC) technique, which is linked with the optimal tip speed ratio for each wind speed value considered. On the grid side, dc-link voltage and reactive power flow to the grid are controlled. For this purpose, first, the simulation model of the system is prepared in MATLAB Simulink considering the dynamic mathematical model of the PMSG, and Wind Turbine Aerodynamic model using the user-defined function blocks. Then, the PI regulators designed for direct speed, torque (current) control, and dc-link voltage are employed in the model. Moreover, to study and analyze the behavior of the system in a variable speed operation, a wind speed starting from cut-in wind speed (3m/s) to the rated wind speed (11m/s) is applied in 4s. The simulation result of the existing system model shows that the actual values of performance variables correspond well with the analytical values of the system. In addition, the chosen control algorithms applied in the control system of the generator-side converter are hence verified.\",\"PeriodicalId\":18948,\"journal\":{\"name\":\"Momona Ethiopian Journal of Science\",\"volume\":\"12 1\",\"pages\":\"155-172\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Momona Ethiopian Journal of Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4314/MEJS.V12I2.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Momona Ethiopian Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/MEJS.V12I2.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了Adama风电场1号(WTG)并网后基于永磁同步发电机(PMSG)的变速风力发电机(WTG)的性能。为了研究WTG的性能,对机侧变流器和电网侧变流器进行了建模和分析。在机器方面,最大能量提取的最大功率点跟踪(MPPT)是使用直接速度控制(DSC)技术完成的,该技术与所考虑的每个风速值的最佳叶尖速比相关联。在电网方面,直流电压和无功功率流向电网受到控制。为此,首先考虑PMSG的动态数学模型,在MATLAB Simulink中建立系统仿真模型,并利用自定义功能块建立风电机组气动模型。然后,在模型中采用了用于直接速度、转矩(电流)控制和直流链路电压的PI调节器。此外,为了研究和分析系统在变速工况下的运行行为,从入路风速(3m/s)到额定风速(11m/s)的风速为4s。现有系统模型的仿真结果表明,性能变量的实际值与系统的解析值吻合较好。并对所选择的控制算法在发电机侧变换器控制系统中的应用进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Modeling and Performance Analysis of PMSG- based Variable Speed WTG: Case Study of Adama Wind Farm I, Ethiopia
In this paper, the performance of Permanent Magnet Synchronous Generator (PMSG) -based Variable Speed Wind Turbine Generator (WTG) at Adama Wind Farm I (WTG), connected to a grid is studied. To study the performance of the WTG, both machine and grid side converters are modeled and analyzed very well. On the machine side, maximum power point tracking (MPPT) for maximum energy extraction is done using the direct speed control (DSC) technique, which is linked with the optimal tip speed ratio for each wind speed value considered. On the grid side, dc-link voltage and reactive power flow to the grid are controlled. For this purpose, first, the simulation model of the system is prepared in MATLAB Simulink considering the dynamic mathematical model of the PMSG, and Wind Turbine Aerodynamic model using the user-defined function blocks. Then, the PI regulators designed for direct speed, torque (current) control, and dc-link voltage are employed in the model. Moreover, to study and analyze the behavior of the system in a variable speed operation, a wind speed starting from cut-in wind speed (3m/s) to the rated wind speed (11m/s) is applied in 4s. The simulation result of the existing system model shows that the actual values of performance variables correspond well with the analytical values of the system. In addition, the chosen control algorithms applied in the control system of the generator-side converter are hence verified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Momona Ethiopian Journal of Science
Momona Ethiopian Journal of Science MULTIDISCIPLINARY SCIENCES-
自引率
0.00%
发文量
13
审稿时长
12 weeks
期刊最新文献
First occurrence of rudderfish Centrolophus niger (Gmelin, 1789) in the Edremit Bay (Northern Aegean Sea, Türkiye) with the maximum length record for Turkish Seas An Engineering Geological Appraisal of the Leakage Problem in Dora-1 Earthen Dam, Tigray: Implications for its Stability Nano-Zirconia Synthesis Methods and their Pioneering Applications in Dentistry Contribution of Participatory Forest Management Program in Non-Timber Forest Products to balance Livelihood Improvement and Conservation: a case of Sera Forest, Amigna District, Southern Ethiopia Effect of Polymerization Variables on the Electrical Conductivity of Polyaniline Functionalized Cotton Textiles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1