肾囊肿的ct分割及三维体积计算

Nanzhou Piao, Jong-Gun Kim, Rae-Hong Park
{"title":"肾囊肿的ct分割及三维体积计算","authors":"Nanzhou Piao, Jong-Gun Kim, Rae-Hong Park","doi":"10.5121/IJCGA.2015.5101","DOIUrl":null,"url":null,"abstract":"This paper proposes a segmentation method and a three-dimensional (3-D) volume calculation method of cysts in kidney from a number of computer tomography (CT) slice images. The input CT slice images contain both sides of kidneys. There are two segmentation steps used in the proposed method: kidney segmentation and cyst segmentation. For kidney segmentation, kidney regions are segmented from CT slice images by using a graph-cut method that is applied to the middle slice of input CT slice images. Then, the same method is used for the remaining CT slice images. In cyst segmentation, cyst regions are segmented from the kidney regions by using fuzzy C-means clustering and level-set methods that can reduce noise of non-cyst regions. For 3-D volume calculation, cyst volume calculation and 3-D volume visualization are used. In cyst volume calculation, the area of cyst in each CT slice image equals to the number of pixels in the cyst regions multiplied by spatial density of CT slice images, and then the volume of cysts is calculated by multiplying the cyst area and thickness (interval) of CT slice images. In 3-D volume visualization, a 3-D visualization technique is used to show the distribution of cysts in kidneys by using the result of cyst volume calculation. The total 3-D volume is the sum of the calculated cyst volume in each CT slice image. Experimental results show a good performance of 3-D volume calculation. The proposed cyst segmentation and 3-D volume calculation methods can provide practical supports to surgery options and medical practice to medical students.","PeriodicalId":54969,"journal":{"name":"International Journal of Computational Geometry & Applications","volume":"5 1","pages":"1-16"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"SEGMENTATION OF CYSTS IN KIDNEY AND 3-D VOLUME CALCULATION FROM CT IMAGES\",\"authors\":\"Nanzhou Piao, Jong-Gun Kim, Rae-Hong Park\",\"doi\":\"10.5121/IJCGA.2015.5101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a segmentation method and a three-dimensional (3-D) volume calculation method of cysts in kidney from a number of computer tomography (CT) slice images. The input CT slice images contain both sides of kidneys. There are two segmentation steps used in the proposed method: kidney segmentation and cyst segmentation. For kidney segmentation, kidney regions are segmented from CT slice images by using a graph-cut method that is applied to the middle slice of input CT slice images. Then, the same method is used for the remaining CT slice images. In cyst segmentation, cyst regions are segmented from the kidney regions by using fuzzy C-means clustering and level-set methods that can reduce noise of non-cyst regions. For 3-D volume calculation, cyst volume calculation and 3-D volume visualization are used. In cyst volume calculation, the area of cyst in each CT slice image equals to the number of pixels in the cyst regions multiplied by spatial density of CT slice images, and then the volume of cysts is calculated by multiplying the cyst area and thickness (interval) of CT slice images. In 3-D volume visualization, a 3-D visualization technique is used to show the distribution of cysts in kidneys by using the result of cyst volume calculation. The total 3-D volume is the sum of the calculated cyst volume in each CT slice image. Experimental results show a good performance of 3-D volume calculation. The proposed cyst segmentation and 3-D volume calculation methods can provide practical supports to surgery options and medical practice to medical students.\",\"PeriodicalId\":54969,\"journal\":{\"name\":\"International Journal of Computational Geometry & Applications\",\"volume\":\"5 1\",\"pages\":\"1-16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Geometry & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/IJCGA.2015.5101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Geometry & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJCGA.2015.5101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了一种基于多张CT切片图像的肾囊肿分割方法和三维体积计算方法。输入的CT切片图像包含肾脏的两侧。在该方法中使用了两个分割步骤:肾脏分割和囊肿分割。对于肾脏分割,使用图切方法从CT切片图像中分割肾脏区域,该方法应用于输入CT切片图像的中间切片。然后,对剩余的CT切片图像使用相同的方法。在囊肿分割中,使用模糊c均值聚类和水平集方法将囊肿区域从肾脏区域中分割出来,从而降低非囊肿区域的噪声。三维体积计算采用囊肿体积计算和三维体积可视化。在计算囊肿体积时,每个CT切片图像中囊肿的面积等于囊肿区域的像素数乘以CT切片图像的空间密度,然后将囊肿面积与CT切片图像的厚度(间隔)相乘计算囊肿的体积。在三维体积可视化中,利用囊肿体积计算的结果,采用三维可视化技术来显示肾脏内囊肿的分布。三维总体积为各CT切片图像计算出的囊肿体积之和。实验结果表明,该方法具有良好的三维体积计算性能。所提出的囊肿分割和三维体积计算方法可以为医学生的手术选择和医疗实践提供实用的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SEGMENTATION OF CYSTS IN KIDNEY AND 3-D VOLUME CALCULATION FROM CT IMAGES
This paper proposes a segmentation method and a three-dimensional (3-D) volume calculation method of cysts in kidney from a number of computer tomography (CT) slice images. The input CT slice images contain both sides of kidneys. There are two segmentation steps used in the proposed method: kidney segmentation and cyst segmentation. For kidney segmentation, kidney regions are segmented from CT slice images by using a graph-cut method that is applied to the middle slice of input CT slice images. Then, the same method is used for the remaining CT slice images. In cyst segmentation, cyst regions are segmented from the kidney regions by using fuzzy C-means clustering and level-set methods that can reduce noise of non-cyst regions. For 3-D volume calculation, cyst volume calculation and 3-D volume visualization are used. In cyst volume calculation, the area of cyst in each CT slice image equals to the number of pixels in the cyst regions multiplied by spatial density of CT slice images, and then the volume of cysts is calculated by multiplying the cyst area and thickness (interval) of CT slice images. In 3-D volume visualization, a 3-D visualization technique is used to show the distribution of cysts in kidneys by using the result of cyst volume calculation. The total 3-D volume is the sum of the calculated cyst volume in each CT slice image. Experimental results show a good performance of 3-D volume calculation. The proposed cyst segmentation and 3-D volume calculation methods can provide practical supports to surgery options and medical practice to medical students.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: The International Journal of Computational Geometry & Applications (IJCGA) is a quarterly journal devoted to the field of computational geometry within the framework of design and analysis of algorithms. Emphasis is placed on the computational aspects of geometric problems that arise in various fields of science and engineering including computer-aided geometry design (CAGD), computer graphics, constructive solid geometry (CSG), operations research, pattern recognition, robotics, solid modelling, VLSI routing/layout, and others. Research contributions ranging from theoretical results in algorithm design — sequential or parallel, probabilistic or randomized algorithms — to applications in the above-mentioned areas are welcome. Research findings or experiences in the implementations of geometric algorithms, such as numerical stability, and papers with a geometric flavour related to algorithms or the application areas of computational geometry are also welcome.
期刊最新文献
On morphs of 1-plane graphs A Geometric Approach to Inelastic Collapse Near-optimal algorithms for point-line fitting problems Algorithms for approximate sparse regression and nearest induced hulls Recognizing weighted and seeded disk graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1