Benjamin M. Seitz, A. Blaisdell, Cody P Polack, Ralph R. Miller
{"title":"生物学意义在人类学习和记忆中的作用","authors":"Benjamin M. Seitz, A. Blaisdell, Cody P Polack, Ralph R. Miller","doi":"10.46867/ijcp.2019.32.03.02","DOIUrl":null,"url":null,"abstract":"Deeply rooted within the history of experimental psychology is the search for general laws of learning that hold across tasks and species. Central to this enterprise has been the notion of equipotentiality; that any two events have the same likelihood of being associated with one another as any other pair of events. Much work, generally summarized as ‘biological constraints on learning,’ has challenged this view, and demonstrates pre-existing relations between cues and outcomes, based on genes and prior experience, that influence potential associability. Learning theorists and comparative psychologists have thus recognized the need to consider how the evolutionary history as well as prior experience of the organism being studied influences its ability to learn about and navigate its environment. We suggest that current models of human memory, and human memory research in general, lack sufficient consideration of how human evolution has shaped human memory systems. We review several findings that suggest the human memory system preferentially processes information relevant to biological fitness, and highlight potential theoretical and applied benefits afforded by adopting this functionalist perspective.","PeriodicalId":39712,"journal":{"name":"International Journal of Comparative Psychology","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The Role of Biological Significance in Human Learning and Memory\",\"authors\":\"Benjamin M. Seitz, A. Blaisdell, Cody P Polack, Ralph R. Miller\",\"doi\":\"10.46867/ijcp.2019.32.03.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deeply rooted within the history of experimental psychology is the search for general laws of learning that hold across tasks and species. Central to this enterprise has been the notion of equipotentiality; that any two events have the same likelihood of being associated with one another as any other pair of events. Much work, generally summarized as ‘biological constraints on learning,’ has challenged this view, and demonstrates pre-existing relations between cues and outcomes, based on genes and prior experience, that influence potential associability. Learning theorists and comparative psychologists have thus recognized the need to consider how the evolutionary history as well as prior experience of the organism being studied influences its ability to learn about and navigate its environment. We suggest that current models of human memory, and human memory research in general, lack sufficient consideration of how human evolution has shaped human memory systems. We review several findings that suggest the human memory system preferentially processes information relevant to biological fitness, and highlight potential theoretical and applied benefits afforded by adopting this functionalist perspective.\",\"PeriodicalId\":39712,\"journal\":{\"name\":\"International Journal of Comparative Psychology\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Comparative Psychology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46867/ijcp.2019.32.03.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Psychology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Comparative Psychology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46867/ijcp.2019.32.03.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Psychology","Score":null,"Total":0}
The Role of Biological Significance in Human Learning and Memory
Deeply rooted within the history of experimental psychology is the search for general laws of learning that hold across tasks and species. Central to this enterprise has been the notion of equipotentiality; that any two events have the same likelihood of being associated with one another as any other pair of events. Much work, generally summarized as ‘biological constraints on learning,’ has challenged this view, and demonstrates pre-existing relations between cues and outcomes, based on genes and prior experience, that influence potential associability. Learning theorists and comparative psychologists have thus recognized the need to consider how the evolutionary history as well as prior experience of the organism being studied influences its ability to learn about and navigate its environment. We suggest that current models of human memory, and human memory research in general, lack sufficient consideration of how human evolution has shaped human memory systems. We review several findings that suggest the human memory system preferentially processes information relevant to biological fitness, and highlight potential theoretical and applied benefits afforded by adopting this functionalist perspective.