单向碳纤维增强塑料多纤维模型复合材料纵向压缩破坏研究

T. Jeong, M. Ueda
{"title":"单向碳纤维增强塑料多纤维模型复合材料纵向压缩破坏研究","authors":"T. Jeong, M. Ueda","doi":"10.4236/OJCM.2016.61002","DOIUrl":null,"url":null,"abstract":"The longitudinal compressive failure of a unidirectional carbon fiber reinforced plastic (CFRP) was studied using multiple-fiber model composites. Aligned carbon fibers were embedded in an epoxy matrix and put on a rectangular beam. A compression test of the model composite was performed by means of a four point bending test of the rectangular beam. The number of carbon fibers was changed from one to several thousands, by which the effect on compressive failure modes was investigated. A compressive failure of a single-fiber model composite was fiber crush. The fiber crush strain was much higher than the compressive failure strain of the unidirectional carbon fiber reinforced plastic. By contrast, a compressive failure of a multiple-fiber model composite was kink-band. The longitudinal compressive failure mechanism shifted from fiber crush to kink-band due to an increasing number of fibers. Kink-band parameters i.e. kink-band angle and kink-band width were dependent on the number of closely-aligned carbon fibers.","PeriodicalId":57868,"journal":{"name":"复合材料期刊(英文)","volume":"06 1","pages":"8-17"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Longitudinal Compressive Failure of Multiple-Fiber Model Composites for a Unidirectional Carbon Fiber Reinforced Plastic\",\"authors\":\"T. Jeong, M. Ueda\",\"doi\":\"10.4236/OJCM.2016.61002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The longitudinal compressive failure of a unidirectional carbon fiber reinforced plastic (CFRP) was studied using multiple-fiber model composites. Aligned carbon fibers were embedded in an epoxy matrix and put on a rectangular beam. A compression test of the model composite was performed by means of a four point bending test of the rectangular beam. The number of carbon fibers was changed from one to several thousands, by which the effect on compressive failure modes was investigated. A compressive failure of a single-fiber model composite was fiber crush. The fiber crush strain was much higher than the compressive failure strain of the unidirectional carbon fiber reinforced plastic. By contrast, a compressive failure of a multiple-fiber model composite was kink-band. The longitudinal compressive failure mechanism shifted from fiber crush to kink-band due to an increasing number of fibers. Kink-band parameters i.e. kink-band angle and kink-band width were dependent on the number of closely-aligned carbon fibers.\",\"PeriodicalId\":57868,\"journal\":{\"name\":\"复合材料期刊(英文)\",\"volume\":\"06 1\",\"pages\":\"8-17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"复合材料期刊(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.4236/OJCM.2016.61002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"复合材料期刊(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/OJCM.2016.61002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

采用多纤维模型复合材料对单向碳纤维增强塑料(CFRP)纵向压缩破坏进行了研究。排列整齐的碳纤维被嵌在环氧树脂基体中,并置于矩形梁上。通过矩形梁的四点弯曲试验,对模型复合材料进行了压缩试验。将碳纤维的数量从1根增加到数千根,研究了碳纤维对压缩破坏模式的影响。单纤维模型复合材料的压缩破坏是纤维粉碎。纤维的破碎应变远高于单向碳纤维增强塑料的压缩破坏应变。而多纤维模型复合材料的压缩破坏表现为扭结带。随着纤维数量的增加,纵向压缩破坏机制由纤维压碎向扭结带转变。扭结带参数,即扭结带角和扭结带宽度取决于紧密排列的碳纤维的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Longitudinal Compressive Failure of Multiple-Fiber Model Composites for a Unidirectional Carbon Fiber Reinforced Plastic
The longitudinal compressive failure of a unidirectional carbon fiber reinforced plastic (CFRP) was studied using multiple-fiber model composites. Aligned carbon fibers were embedded in an epoxy matrix and put on a rectangular beam. A compression test of the model composite was performed by means of a four point bending test of the rectangular beam. The number of carbon fibers was changed from one to several thousands, by which the effect on compressive failure modes was investigated. A compressive failure of a single-fiber model composite was fiber crush. The fiber crush strain was much higher than the compressive failure strain of the unidirectional carbon fiber reinforced plastic. By contrast, a compressive failure of a multiple-fiber model composite was kink-band. The longitudinal compressive failure mechanism shifted from fiber crush to kink-band due to an increasing number of fibers. Kink-band parameters i.e. kink-band angle and kink-band width were dependent on the number of closely-aligned carbon fibers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
127
期刊最新文献
A Decisive Study on Dielectric Response of Bi2O3/Polystyrene & Bi2O3/PVDF Composite as Flexible Electrodes for Energy Storage Influence of Plastic and Coconut Shell (Cocos nucifera L.) on the Physico-Mechanical Properties of the 8/6 Composite Rafter The Equilibrium Moisture Content of Five Lesser Utilized Species of Ghana Contrasted with Three European Species Development and Evaluation of the Mechanical Properties of Coconut Fibre Reinforced Low Density Polyethylene Composite Influence of the Age of Bamboo Culm and Its Vertical Position on the Technological Properties of Bamboo Fibers: A Case of Bambusa vulgaris Species from Cameroonian Culture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1