生物可降解聚乳酸增韧剂与热塑性聚氨酯(TPU)及增容熔喷非织造布相容性的改善

Mohammad Obaidur Rahman, Feichao Zhu, Bin Yu
{"title":"生物可降解聚乳酸增韧剂与热塑性聚氨酯(TPU)及增容熔喷非织造布相容性的改善","authors":"Mohammad Obaidur Rahman, Feichao Zhu, Bin Yu","doi":"10.4236/ojcm.2022.121001","DOIUrl":null,"url":null,"abstract":"Poly (Lactic Acid) (PLA) is a biodegradable polymer which originates from natural resources such as corn and starch, offering excellent strength, biodegradability, nevertheless its inherent brittleness and low impact resistance properties have limited its application. On the other hand, Thermoplastic Polyurethane (TPU) has high toughness, durability and flexibility, which is one of the most potential alternatives for enhancing the flexibility and mechanical strength of Poly (Lactic Acid) (PLA) by blending it with a compatibilizer. With the aim to improve the mechanical and thermal properties of Poly (Lactic Acid) (PLA) meltblown nonwovens, The Thermoplastic Polyurethane (TPU) was melt blended with Poly (Lactic Acid) (PLA) at the different corresponding proportions for toughening the Poly (Lactic Acid) and the corresponding PLA/TPU MBs (meltblown nonwovens) were also manufactured. Joncryl ADR 4400 is mixed into the PLA matrix during processing. It was found that Joncryl had a much higher chain extension that substantially increased the molecular weight of the PLA matrix. SEM study revealed that Joncryl ADR 4400 is a good compatibilizer. Moreover, in this study, the crystallization, thermal and rheological behaviors of the corresponding PLA and TPU blends were also investigated. PLA/TPU MBs were also characterized by morphology and mechanical properties. The rheological property of the PLA/TPU meltblown nonwoven revealed that the viscosity is increasing as the amount of TPU is increasing in the blend, PLA/TPU meltblown nonwovens exhibited excellent mechanical properties; they are soft, elastic, and have certain tensile strength. New materials have potential applications in the medical and agricultural fields. Joncryl ADR 4400 compatibilized blends showed higher strength than simple PLA/TPU blends at the same PLA/TPU ratio. How to cite this paper: Rahman, M.O., Zhu, F.C. and Yu, B. (2022) Improving the Compatibility of Biodegradable Poly (Lactic Acid) Toughening with Thermoplastic Polyurethane (TPU) and Compatibilized Meltblown Nonwoven. Open Journal of Composite Materials, 12, 1-15. https://doi.org/10.4236/ojcm.2022.121001 Received: September 12, 2021 Accepted: December 13, 2021 Published: December 16, 2021 Copyright © 2022 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/","PeriodicalId":57868,"journal":{"name":"复合材料期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Improving the Compatibility of Biodegradable Poly (Lactic Acid) Toughening with Thermoplastic Polyurethane (TPU) and Compatibilized Meltblown Nonwoven\",\"authors\":\"Mohammad Obaidur Rahman, Feichao Zhu, Bin Yu\",\"doi\":\"10.4236/ojcm.2022.121001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Poly (Lactic Acid) (PLA) is a biodegradable polymer which originates from natural resources such as corn and starch, offering excellent strength, biodegradability, nevertheless its inherent brittleness and low impact resistance properties have limited its application. On the other hand, Thermoplastic Polyurethane (TPU) has high toughness, durability and flexibility, which is one of the most potential alternatives for enhancing the flexibility and mechanical strength of Poly (Lactic Acid) (PLA) by blending it with a compatibilizer. With the aim to improve the mechanical and thermal properties of Poly (Lactic Acid) (PLA) meltblown nonwovens, The Thermoplastic Polyurethane (TPU) was melt blended with Poly (Lactic Acid) (PLA) at the different corresponding proportions for toughening the Poly (Lactic Acid) and the corresponding PLA/TPU MBs (meltblown nonwovens) were also manufactured. Joncryl ADR 4400 is mixed into the PLA matrix during processing. It was found that Joncryl had a much higher chain extension that substantially increased the molecular weight of the PLA matrix. SEM study revealed that Joncryl ADR 4400 is a good compatibilizer. Moreover, in this study, the crystallization, thermal and rheological behaviors of the corresponding PLA and TPU blends were also investigated. PLA/TPU MBs were also characterized by morphology and mechanical properties. The rheological property of the PLA/TPU meltblown nonwoven revealed that the viscosity is increasing as the amount of TPU is increasing in the blend, PLA/TPU meltblown nonwovens exhibited excellent mechanical properties; they are soft, elastic, and have certain tensile strength. New materials have potential applications in the medical and agricultural fields. Joncryl ADR 4400 compatibilized blends showed higher strength than simple PLA/TPU blends at the same PLA/TPU ratio. How to cite this paper: Rahman, M.O., Zhu, F.C. and Yu, B. (2022) Improving the Compatibility of Biodegradable Poly (Lactic Acid) Toughening with Thermoplastic Polyurethane (TPU) and Compatibilized Meltblown Nonwoven. Open Journal of Composite Materials, 12, 1-15. https://doi.org/10.4236/ojcm.2022.121001 Received: September 12, 2021 Accepted: December 13, 2021 Published: December 16, 2021 Copyright © 2022 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/\",\"PeriodicalId\":57868,\"journal\":{\"name\":\"复合材料期刊(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"复合材料期刊(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.4236/ojcm.2022.121001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"复合材料期刊(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/ojcm.2022.121001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

聚乳酸(PLA)是一种来源于玉米和淀粉等天然资源的可生物降解聚合物,具有优异的强度和可生物降解性,但其固有的脆性和低抗冲击性限制了其应用。另一方面,热塑性聚氨酯(TPU)具有高韧性、耐久性和柔韧性,是通过与相容剂共混提高聚乳酸(PLA)柔韧性和机械强度的最有潜力的替代品之一。为了提高聚乳酸(PLA)熔喷非织造布的力学性能和热工性能,将热塑性聚氨酯(TPU)与聚乳酸(PLA)按不同比例熔融共混,对聚乳酸进行增韧,制备了相应的PLA/TPU熔喷非织造布。Joncryl ADR 4400在加工过程中混合到PLA基体中。结果发现,Joncryl具有更高的链延伸,这大大增加了PLA基质的分子量。扫描电镜研究表明,Joncryl ADR 4400是一种良好的增容剂。此外,本研究还研究了相应的PLA和TPU共混物的结晶行为、热行为和流变行为。PLA/TPU MBs的形貌和力学性能也进行了表征。对PLA/TPU熔喷非织造布的流变性能研究表明,随着TPU加入量的增加,PLA/TPU熔喷非织造布的粘度增加,PLA/TPU熔喷非织造布表现出优异的力学性能;它们柔软、有弹性,并具有一定的抗拉强度。新材料在医疗和农业领域具有潜在的应用前景。在相同PLA/TPU比下,Joncryl ADR 4400共混物的强度高于单纯PLA/TPU共混物。Rahman, M.O, Zhu, F.C.和Yu, B.(2022)提高生物可降解聚乳酸增韧与热塑性聚氨酯(TPU)和增塑型熔喷非织造布的相容性。复合材料学报,12,1-15。https://doi.org/10.4236/ojcm.2022.121001收稿日期:2021年9月12日收稿日期:2021年12月13日出版日期:2021年12月16日版权所有©2022作者与科研出版公司本作品采用知识共享署名国际许可协议(CC BY 4.0)。http://creativecommons.org/licenses/by/4.0/
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving the Compatibility of Biodegradable Poly (Lactic Acid) Toughening with Thermoplastic Polyurethane (TPU) and Compatibilized Meltblown Nonwoven
Poly (Lactic Acid) (PLA) is a biodegradable polymer which originates from natural resources such as corn and starch, offering excellent strength, biodegradability, nevertheless its inherent brittleness and low impact resistance properties have limited its application. On the other hand, Thermoplastic Polyurethane (TPU) has high toughness, durability and flexibility, which is one of the most potential alternatives for enhancing the flexibility and mechanical strength of Poly (Lactic Acid) (PLA) by blending it with a compatibilizer. With the aim to improve the mechanical and thermal properties of Poly (Lactic Acid) (PLA) meltblown nonwovens, The Thermoplastic Polyurethane (TPU) was melt blended with Poly (Lactic Acid) (PLA) at the different corresponding proportions for toughening the Poly (Lactic Acid) and the corresponding PLA/TPU MBs (meltblown nonwovens) were also manufactured. Joncryl ADR 4400 is mixed into the PLA matrix during processing. It was found that Joncryl had a much higher chain extension that substantially increased the molecular weight of the PLA matrix. SEM study revealed that Joncryl ADR 4400 is a good compatibilizer. Moreover, in this study, the crystallization, thermal and rheological behaviors of the corresponding PLA and TPU blends were also investigated. PLA/TPU MBs were also characterized by morphology and mechanical properties. The rheological property of the PLA/TPU meltblown nonwoven revealed that the viscosity is increasing as the amount of TPU is increasing in the blend, PLA/TPU meltblown nonwovens exhibited excellent mechanical properties; they are soft, elastic, and have certain tensile strength. New materials have potential applications in the medical and agricultural fields. Joncryl ADR 4400 compatibilized blends showed higher strength than simple PLA/TPU blends at the same PLA/TPU ratio. How to cite this paper: Rahman, M.O., Zhu, F.C. and Yu, B. (2022) Improving the Compatibility of Biodegradable Poly (Lactic Acid) Toughening with Thermoplastic Polyurethane (TPU) and Compatibilized Meltblown Nonwoven. Open Journal of Composite Materials, 12, 1-15. https://doi.org/10.4236/ojcm.2022.121001 Received: September 12, 2021 Accepted: December 13, 2021 Published: December 16, 2021 Copyright © 2022 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
127
期刊最新文献
A Decisive Study on Dielectric Response of Bi2O3/Polystyrene & Bi2O3/PVDF Composite as Flexible Electrodes for Energy Storage Influence of Plastic and Coconut Shell (Cocos nucifera L.) on the Physico-Mechanical Properties of the 8/6 Composite Rafter The Equilibrium Moisture Content of Five Lesser Utilized Species of Ghana Contrasted with Three European Species Development and Evaluation of the Mechanical Properties of Coconut Fibre Reinforced Low Density Polyethylene Composite Influence of the Age of Bamboo Culm and Its Vertical Position on the Technological Properties of Bamboo Fibers: A Case of Bambusa vulgaris Species from Cameroonian Culture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1