T. Suvitaival, J. Parkkinen, S. Virtanen, Samuel Kaski
{"title":"跨生物毒物基因组学与群因子分析","authors":"T. Suvitaival, J. Parkkinen, S. Virtanen, Samuel Kaski","doi":"10.4161/sysb.29291","DOIUrl":null,"url":null,"abstract":"We investigate the problem of detecting toxicogenomic associations that generalize across organisms, that is, statistical dependencies between transcriptional responses of multiple organisms and toxicological outcomes. We apply an interpretable probabilistic model to detect cross-organism toxicogenomic associations and propose an approach for drug toxicity analysis based on the interactive retrieval of drugs with similar toxicogenomic properties. We show that our approach can give relevant information about the properties of a drug even when direct prediction of toxicity is not feasible. Moreover, we show that a search from a cross-organism database can improve accuracy in the analysis.","PeriodicalId":90057,"journal":{"name":"Systems biomedicine (Austin, Tex.)","volume":"2 1","pages":"71 - 80"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/sysb.29291","citationCount":"6","resultStr":"{\"title\":\"Cross-organism toxicogenomics with group factor analysis\",\"authors\":\"T. Suvitaival, J. Parkkinen, S. Virtanen, Samuel Kaski\",\"doi\":\"10.4161/sysb.29291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the problem of detecting toxicogenomic associations that generalize across organisms, that is, statistical dependencies between transcriptional responses of multiple organisms and toxicological outcomes. We apply an interpretable probabilistic model to detect cross-organism toxicogenomic associations and propose an approach for drug toxicity analysis based on the interactive retrieval of drugs with similar toxicogenomic properties. We show that our approach can give relevant information about the properties of a drug even when direct prediction of toxicity is not feasible. Moreover, we show that a search from a cross-organism database can improve accuracy in the analysis.\",\"PeriodicalId\":90057,\"journal\":{\"name\":\"Systems biomedicine (Austin, Tex.)\",\"volume\":\"2 1\",\"pages\":\"71 - 80\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4161/sysb.29291\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems biomedicine (Austin, Tex.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4161/sysb.29291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems biomedicine (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4161/sysb.29291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cross-organism toxicogenomics with group factor analysis
We investigate the problem of detecting toxicogenomic associations that generalize across organisms, that is, statistical dependencies between transcriptional responses of multiple organisms and toxicological outcomes. We apply an interpretable probabilistic model to detect cross-organism toxicogenomic associations and propose an approach for drug toxicity analysis based on the interactive retrieval of drugs with similar toxicogenomic properties. We show that our approach can give relevant information about the properties of a drug even when direct prediction of toxicity is not feasible. Moreover, we show that a search from a cross-organism database can improve accuracy in the analysis.