α ENaC-b选择性剪接调控上皮钠通道α亚基的新机制

M. Shehata
{"title":"α ENaC-b选择性剪接调控上皮钠通道α亚基的新机制","authors":"M. Shehata","doi":"10.4137/BCI.S880","DOIUrl":null,"url":null,"abstract":"Introduction In Dahl rats’ kidney cortex, the alternatively spliced form of the epithelial sodium channel α subunit (α ENaC-b) is the most abundant mRNA transcript (32+/-3 fold > α ENaC-wt) as was investigated by quantitative RT-PCR analysis. α ENaC-b mRNA levels were significantly higher in Dahl R versus S rats, and were further augmented by high salt diet. Objectives In the present study, we described the molecular cloning and searched for a possible role of α ENaC-b by testing its potential expression in COS7 cells as well as its impact on α ENaC-wt expression levels when co-expressed in COS7 cells in a dose-dependent manner. Methods Using RT-PCR strategy, the full-length wildtype α ENaC transcript and the alternatively spliced form α ENaC-b were amplified, sequenced, cloned, subcloned into PCMV-sport6 expression vector, expressed and co-expressed into COS7 cells in a dose-dependent manner. A combination of denaturing and native western blotting techniques was employed to examine the expression of α ENaC-b in vitro, and to determine if an interaction between α ENaC-b and α ENaC-wt occurs in vitro, and finally to demonstrate if degradation of α ENaC-wt protein does occur. Results α ENaC-b is translated in COS7 cells. Co-expression of α ENaC-b together with α ENaC-wt reduced α ENaC-wt levels in a dose-dependent manner. α ENaC-wt and α ENaC-b appear to form a complex that enhances the degradation of α ENaC-wt. Conclusions Western blots suggest a novel mechanism in α ENaC regulation whereby α ENaC-b exerts a dominant negative effect on α ENaC-wt expression. This is potentially by sequestering α ENaC-wt, enhancing its proteolytic degradation, and possibly explaining the mechanism of salt-resistance in Dahl R rats.","PeriodicalId":8791,"journal":{"name":"Biochemistry Insights","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Novel Mechanism in Regulating the Alpha-Subunit of the Epithelial Sodium Channel (α ENaC) by the Alternatively Spliced Form α ENaC-b\",\"authors\":\"M. Shehata\",\"doi\":\"10.4137/BCI.S880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction In Dahl rats’ kidney cortex, the alternatively spliced form of the epithelial sodium channel α subunit (α ENaC-b) is the most abundant mRNA transcript (32+/-3 fold > α ENaC-wt) as was investigated by quantitative RT-PCR analysis. α ENaC-b mRNA levels were significantly higher in Dahl R versus S rats, and were further augmented by high salt diet. Objectives In the present study, we described the molecular cloning and searched for a possible role of α ENaC-b by testing its potential expression in COS7 cells as well as its impact on α ENaC-wt expression levels when co-expressed in COS7 cells in a dose-dependent manner. Methods Using RT-PCR strategy, the full-length wildtype α ENaC transcript and the alternatively spliced form α ENaC-b were amplified, sequenced, cloned, subcloned into PCMV-sport6 expression vector, expressed and co-expressed into COS7 cells in a dose-dependent manner. A combination of denaturing and native western blotting techniques was employed to examine the expression of α ENaC-b in vitro, and to determine if an interaction between α ENaC-b and α ENaC-wt occurs in vitro, and finally to demonstrate if degradation of α ENaC-wt protein does occur. Results α ENaC-b is translated in COS7 cells. Co-expression of α ENaC-b together with α ENaC-wt reduced α ENaC-wt levels in a dose-dependent manner. α ENaC-wt and α ENaC-b appear to form a complex that enhances the degradation of α ENaC-wt. Conclusions Western blots suggest a novel mechanism in α ENaC regulation whereby α ENaC-b exerts a dominant negative effect on α ENaC-wt expression. This is potentially by sequestering α ENaC-wt, enhancing its proteolytic degradation, and possibly explaining the mechanism of salt-resistance in Dahl R rats.\",\"PeriodicalId\":8791,\"journal\":{\"name\":\"Biochemistry Insights\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry Insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4137/BCI.S880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4137/BCI.S880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

定量RT-PCR分析发现,在Dahl大鼠肾皮质中,上皮钠通道α亚基(α ENaC-b)的选择性剪接形式是最丰富的mRNA转录物(32+/-3倍> α ENaC-wt)。Dahl R组大鼠α ENaC-b mRNA水平显著高于S组大鼠,高盐饮食使α ENaC-b mRNA水平进一步升高。本研究通过对α ENaC-b在COS7细胞中的潜在表达以及在COS7细胞中共表达时对α ENaC-wt表达水平的影响,对α ENaC-b在COS7细胞中的可能作用进行了描述和研究。方法采用RT-PCR方法,将α ENaC野生型全长转录本和α ENaC-b的选择性剪接形式扩增、测序、克隆、亚克隆到PCMV-sport6表达载体中,并以剂量依赖性方式在COS7细胞中表达和共表达。采用变性和天然western blotting相结合的方法检测α ENaC-b在体外的表达,并确定α ENaC-b与α ENaC-wt在体外是否发生相互作用,最后证实α ENaC-wt蛋白是否发生降解。结果α ENaC-b在COS7细胞中被翻译。α ENaC-b与α ENaC-wt的共表达以剂量依赖性方式降低α ENaC-wt水平。α ENaC-wt与α ENaC-b形成复合物,促进α ENaC-wt的降解。结论Western blot提示在α ENaC调控中存在一种新的机制,即α ENaC-b对α ENaC-wt表达具有显性负向作用。这可能是通过隔离α enact -wt,增强其蛋白水解降解,并可能解释Dahl R大鼠耐盐的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Mechanism in Regulating the Alpha-Subunit of the Epithelial Sodium Channel (α ENaC) by the Alternatively Spliced Form α ENaC-b
Introduction In Dahl rats’ kidney cortex, the alternatively spliced form of the epithelial sodium channel α subunit (α ENaC-b) is the most abundant mRNA transcript (32+/-3 fold > α ENaC-wt) as was investigated by quantitative RT-PCR analysis. α ENaC-b mRNA levels were significantly higher in Dahl R versus S rats, and were further augmented by high salt diet. Objectives In the present study, we described the molecular cloning and searched for a possible role of α ENaC-b by testing its potential expression in COS7 cells as well as its impact on α ENaC-wt expression levels when co-expressed in COS7 cells in a dose-dependent manner. Methods Using RT-PCR strategy, the full-length wildtype α ENaC transcript and the alternatively spliced form α ENaC-b were amplified, sequenced, cloned, subcloned into PCMV-sport6 expression vector, expressed and co-expressed into COS7 cells in a dose-dependent manner. A combination of denaturing and native western blotting techniques was employed to examine the expression of α ENaC-b in vitro, and to determine if an interaction between α ENaC-b and α ENaC-wt occurs in vitro, and finally to demonstrate if degradation of α ENaC-wt protein does occur. Results α ENaC-b is translated in COS7 cells. Co-expression of α ENaC-b together with α ENaC-wt reduced α ENaC-wt levels in a dose-dependent manner. α ENaC-wt and α ENaC-b appear to form a complex that enhances the degradation of α ENaC-wt. Conclusions Western blots suggest a novel mechanism in α ENaC regulation whereby α ENaC-b exerts a dominant negative effect on α ENaC-wt expression. This is potentially by sequestering α ENaC-wt, enhancing its proteolytic degradation, and possibly explaining the mechanism of salt-resistance in Dahl R rats.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemistry Insights
Biochemistry Insights BIOCHEMISTRY & MOLECULAR BIOLOGY-
自引率
0.00%
发文量
0
期刊最新文献
A Solo Dance or a Tango? The Roles of N6-Methyladenosine in Human Diseases Aerococcus urinae and Globicatella sanguinis Persist in Polymicrobial Urethral Catheter Biofilms Examined in Longitudinal Profiles at the Proteomic Level. A High Creatine Kinase Concentration Might Be a Sign of McArdle Disease in Patient With Type 1 Diabetes The Role of Insulin-Like Growth Factors and Insulin-Like Growth Factor-Binding Proteins in the Nervous System.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1