{"title":"用于检测加工孔表面缺陷的激光检测系统的开发和商业化","authors":"S. Okada, O. Nakamura, Yasufumi Esaki","doi":"10.5571/SYNTH.11.3_137","DOIUrl":null,"url":null,"abstract":"Systems with various methods have been developed such as eddy current, camera imaging, and laser reflection, but none attained the level that could satisfy on-site demands. Okada et al . have engaged in R&D of advanced industrial measurement systems using semiconductor lasers that are small, lightweight, and easy to handle, and developed new devices that could measure glossy or mirror surfaces that were difficult to measure with conventional measurement technology. Utilizing this experience, and collaborating closely with regional companies, AIST and Sigma engaged in the development of a system to conduct high-speed and high-precision inspection for minute flaws and defects on the inner wall surfaces of machined holes with various diameters, and finally succeeded in developing and commercializing a laser defect inspection system. An indispensable aspect of manufacturing is the external inspection of all product parts. For example, in the manufacturing of cars, autonomous inspection technology is required to detect minute flaws on glossy or mirror surfaces, which are easily overlooked by visual inspection. In this paper, we report on the history, significance, and future development of an innovative defect inspection system, “ANALYZER,” which has been developed and commercialized. This system utilizes AIST technology—optical diffraction by semiconductor laser—to realize accurate, autonomous inspection of inner wall surfaces of high quality machined holes of various sizes. from Synthesiology , Vol.11, No.3, p.137–147 (2018)]","PeriodicalId":39206,"journal":{"name":"Synthesiology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and commercialization of laser inspection system to detect surface flaws of machined holes\",\"authors\":\"S. Okada, O. Nakamura, Yasufumi Esaki\",\"doi\":\"10.5571/SYNTH.11.3_137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Systems with various methods have been developed such as eddy current, camera imaging, and laser reflection, but none attained the level that could satisfy on-site demands. Okada et al . have engaged in R&D of advanced industrial measurement systems using semiconductor lasers that are small, lightweight, and easy to handle, and developed new devices that could measure glossy or mirror surfaces that were difficult to measure with conventional measurement technology. Utilizing this experience, and collaborating closely with regional companies, AIST and Sigma engaged in the development of a system to conduct high-speed and high-precision inspection for minute flaws and defects on the inner wall surfaces of machined holes with various diameters, and finally succeeded in developing and commercializing a laser defect inspection system. An indispensable aspect of manufacturing is the external inspection of all product parts. For example, in the manufacturing of cars, autonomous inspection technology is required to detect minute flaws on glossy or mirror surfaces, which are easily overlooked by visual inspection. In this paper, we report on the history, significance, and future development of an innovative defect inspection system, “ANALYZER,” which has been developed and commercialized. This system utilizes AIST technology—optical diffraction by semiconductor laser—to realize accurate, autonomous inspection of inner wall surfaces of high quality machined holes of various sizes. from Synthesiology , Vol.11, No.3, p.137–147 (2018)]\",\"PeriodicalId\":39206,\"journal\":{\"name\":\"Synthesiology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthesiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5571/SYNTH.11.3_137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthesiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5571/SYNTH.11.3_137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
Development and commercialization of laser inspection system to detect surface flaws of machined holes
Systems with various methods have been developed such as eddy current, camera imaging, and laser reflection, but none attained the level that could satisfy on-site demands. Okada et al . have engaged in R&D of advanced industrial measurement systems using semiconductor lasers that are small, lightweight, and easy to handle, and developed new devices that could measure glossy or mirror surfaces that were difficult to measure with conventional measurement technology. Utilizing this experience, and collaborating closely with regional companies, AIST and Sigma engaged in the development of a system to conduct high-speed and high-precision inspection for minute flaws and defects on the inner wall surfaces of machined holes with various diameters, and finally succeeded in developing and commercializing a laser defect inspection system. An indispensable aspect of manufacturing is the external inspection of all product parts. For example, in the manufacturing of cars, autonomous inspection technology is required to detect minute flaws on glossy or mirror surfaces, which are easily overlooked by visual inspection. In this paper, we report on the history, significance, and future development of an innovative defect inspection system, “ANALYZER,” which has been developed and commercialized. This system utilizes AIST technology—optical diffraction by semiconductor laser—to realize accurate, autonomous inspection of inner wall surfaces of high quality machined holes of various sizes. from Synthesiology , Vol.11, No.3, p.137–147 (2018)]