聚维酮碘对SARS-CoV-2的体外毒力研究

Q4 Immunology and Microbiology Journal of Bacteriology and Virology Pub Date : 2020-01-01 DOI:10.4167/JBV.2020.50.3.195
Shin Kyeong-Ryeol, Kwak Kyung-Hee, Chunguang Cui, Bae Joon-Yong, Hong Woo-Sung, Park Man-Seong
{"title":"聚维酮碘对SARS-CoV-2的体外毒力研究","authors":"Shin Kyeong-Ryeol, Kwak Kyung-Hee, Chunguang Cui, Bae Joon-Yong, Hong Woo-Sung, Park Man-Seong","doi":"10.4167/JBV.2020.50.3.195","DOIUrl":null,"url":null,"abstract":"As of September 2020, SARS-CoV-2 has infected over 30 million people worldwide, and the death toll has now risen to 950,000 Given that Povidone-iodine (PVP-I) had consistently been showing the virucidal efficacy against various types of viruses, such as SARS-CoV, MERS-CoV, and Ebola, we conducted this study to figure out the virucidal effect against SARS-CoV-2 by using a viral plaque assay We performed Kill-Time assays to assess the viral inactivation of SARS-CoV-2 contaminants after the application of the PVP-I product (Betadine® Throat Spray, PVP-I 0 45%) This test consisted of clean and dirty conditions and was designed to check the viral titers at a contact time of 60 seconds, which were evaluated by plaque-reduction rates in Vero cells This PVP-I product fully achieved ≥4 log10 reductions in viral titers under both clean and dirty conditions This level of reduction, ≥4 log10 (99 99%), in viral titers presented to be effective in terms of virucidal efficacy, according to the European standards, EN14476 This study revealed the virucidal efficacy of Betadine® Throat Spray against SARS-CoV-2 virus Given that the convenience and availability of this product, we think that it may contribute to inhibit viral infection and transmissibility as an active type of personal protective equipment (PPE) by managing the hygiene of patients and medical professionals","PeriodicalId":39739,"journal":{"name":"Journal of Bacteriology and Virology","volume":"50 1","pages":"195-202"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"In Vitro Virucidal Effect of Povidone-Iodine Against SARS-CoV-2\",\"authors\":\"Shin Kyeong-Ryeol, Kwak Kyung-Hee, Chunguang Cui, Bae Joon-Yong, Hong Woo-Sung, Park Man-Seong\",\"doi\":\"10.4167/JBV.2020.50.3.195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As of September 2020, SARS-CoV-2 has infected over 30 million people worldwide, and the death toll has now risen to 950,000 Given that Povidone-iodine (PVP-I) had consistently been showing the virucidal efficacy against various types of viruses, such as SARS-CoV, MERS-CoV, and Ebola, we conducted this study to figure out the virucidal effect against SARS-CoV-2 by using a viral plaque assay We performed Kill-Time assays to assess the viral inactivation of SARS-CoV-2 contaminants after the application of the PVP-I product (Betadine® Throat Spray, PVP-I 0 45%) This test consisted of clean and dirty conditions and was designed to check the viral titers at a contact time of 60 seconds, which were evaluated by plaque-reduction rates in Vero cells This PVP-I product fully achieved ≥4 log10 reductions in viral titers under both clean and dirty conditions This level of reduction, ≥4 log10 (99 99%), in viral titers presented to be effective in terms of virucidal efficacy, according to the European standards, EN14476 This study revealed the virucidal efficacy of Betadine® Throat Spray against SARS-CoV-2 virus Given that the convenience and availability of this product, we think that it may contribute to inhibit viral infection and transmissibility as an active type of personal protective equipment (PPE) by managing the hygiene of patients and medical professionals\",\"PeriodicalId\":39739,\"journal\":{\"name\":\"Journal of Bacteriology and Virology\",\"volume\":\"50 1\",\"pages\":\"195-202\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bacteriology and Virology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4167/JBV.2020.50.3.195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bacteriology and Virology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4167/JBV.2020.50.3.195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 4

摘要

截至2020年9月,全球SARS-CoV-2感染人数已超过3000万人,死亡人数已上升至95万人。鉴于聚维酮碘(PVP-I)一直显示出对SARS-CoV、MERS-CoV、埃博拉等多种病毒的杀病毒效果,我们进行了Kill-Time试验,以评估使用PVP-I产品(Betadine®咽喉喷雾剂,PVP-I 0 45%)后SARS-CoV-2污染物的病毒灭活情况。该试验包括清洁和肮脏条件,旨在检测接触时间为60秒的病毒滴度。根据欧洲标准EN14476,该产品在清洁和肮脏条件下均可将病毒滴度降低≥4 log10(99.99%)。该研究揭示了倍他定®咽喉喷雾剂对SARS-CoV-2病毒的杀病毒效果。我们认为,通过管理患者和医疗专业人员的卫生,它作为一种活动性个人防护装备(PPE)可能有助于抑制病毒感染和传播
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In Vitro Virucidal Effect of Povidone-Iodine Against SARS-CoV-2
As of September 2020, SARS-CoV-2 has infected over 30 million people worldwide, and the death toll has now risen to 950,000 Given that Povidone-iodine (PVP-I) had consistently been showing the virucidal efficacy against various types of viruses, such as SARS-CoV, MERS-CoV, and Ebola, we conducted this study to figure out the virucidal effect against SARS-CoV-2 by using a viral plaque assay We performed Kill-Time assays to assess the viral inactivation of SARS-CoV-2 contaminants after the application of the PVP-I product (Betadine® Throat Spray, PVP-I 0 45%) This test consisted of clean and dirty conditions and was designed to check the viral titers at a contact time of 60 seconds, which were evaluated by plaque-reduction rates in Vero cells This PVP-I product fully achieved ≥4 log10 reductions in viral titers under both clean and dirty conditions This level of reduction, ≥4 log10 (99 99%), in viral titers presented to be effective in terms of virucidal efficacy, according to the European standards, EN14476 This study revealed the virucidal efficacy of Betadine® Throat Spray against SARS-CoV-2 virus Given that the convenience and availability of this product, we think that it may contribute to inhibit viral infection and transmissibility as an active type of personal protective equipment (PPE) by managing the hygiene of patients and medical professionals
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Bacteriology and Virology
Journal of Bacteriology and Virology Immunology and Microbiology-Immunology
CiteScore
0.80
自引率
0.00%
发文量
16
期刊最新文献
Plazomicin—a New Aminoglycoside—for Treating Complicated Urinary Tract Infections Trends in Norovirus Distribution among the Children of Childcare Center Intestinal Organoid as a Research Platform for the Virus-host Interaction Distribution and Transmission of Enterobacteriaceae Clinical Isolates Co-resistant to Colistin and Carbapenem in Gangwon Province, South Korea Antiviral Activity of Flavonoids Against Non-polio Enteroviruses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1