{"title":"贫金属球状星团m53和m92的相对年龄差异","authors":"D. Cho, H. Sung, Sanggak Lee, T. Yoon","doi":"10.5303/JKAS.2016.49.5.175","DOIUrl":null,"url":null,"abstract":"CCD photometric observations of the globular cluster (GC), M53 (NGC 5024), are performed using the 1.8 m telescope at the Bohyunsan Optical Astronomy Observatory in Korea on the same nights (2002 April and 2003 May) as the observations of the GC M92 (NGC 6341) reported by Cho and Lee using the same instrumental setup. The data for M53 is reduced using the same method as used for M92 by Cho and Lee, including preprocessing, point-spread function fitting photometry, and standardization etc. Therefore, M53 and M92 are on the same photometric system defined by Landolt, and the photometry of M53 and M92 is tied together as closely as possible. After complete photometric reduction, the V versus B − V , V versus V − I, and V versus B − I color-magnitude diagrams (CMDs) of M53 are produced to derive the relative ages of M53 and M92 and derive the various characteristics of its CMDs in future analysis. From the present analysis, the relative ages of M53 and M92 are derived using the Δ(B − V ) method reported by VandenBerg et al. The relative age of M53 is found to be 1.6 ± 0.85 Gyr younger than that of M92 if the absolute age of M92 is taken to be 14 Gyr. This relative age difference between M53 and M92 causes slight differences in the horizontal-branch morphology of these two GCs.","PeriodicalId":49994,"journal":{"name":"Journal of the Korean Astronomical Society","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"RELATIVE AGE DIFFERENCE BETWEEN THE METAL-POOR GLOBULAR CLUSTERS M53 AND M92\",\"authors\":\"D. Cho, H. Sung, Sanggak Lee, T. Yoon\",\"doi\":\"10.5303/JKAS.2016.49.5.175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CCD photometric observations of the globular cluster (GC), M53 (NGC 5024), are performed using the 1.8 m telescope at the Bohyunsan Optical Astronomy Observatory in Korea on the same nights (2002 April and 2003 May) as the observations of the GC M92 (NGC 6341) reported by Cho and Lee using the same instrumental setup. The data for M53 is reduced using the same method as used for M92 by Cho and Lee, including preprocessing, point-spread function fitting photometry, and standardization etc. Therefore, M53 and M92 are on the same photometric system defined by Landolt, and the photometry of M53 and M92 is tied together as closely as possible. After complete photometric reduction, the V versus B − V , V versus V − I, and V versus B − I color-magnitude diagrams (CMDs) of M53 are produced to derive the relative ages of M53 and M92 and derive the various characteristics of its CMDs in future analysis. From the present analysis, the relative ages of M53 and M92 are derived using the Δ(B − V ) method reported by VandenBerg et al. The relative age of M53 is found to be 1.6 ± 0.85 Gyr younger than that of M92 if the absolute age of M92 is taken to be 14 Gyr. This relative age difference between M53 and M92 causes slight differences in the horizontal-branch morphology of these two GCs.\",\"PeriodicalId\":49994,\"journal\":{\"name\":\"Journal of the Korean Astronomical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2016-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Astronomical Society\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.5303/JKAS.2016.49.5.175\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Astronomical Society","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5303/JKAS.2016.49.5.175","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
RELATIVE AGE DIFFERENCE BETWEEN THE METAL-POOR GLOBULAR CLUSTERS M53 AND M92
CCD photometric observations of the globular cluster (GC), M53 (NGC 5024), are performed using the 1.8 m telescope at the Bohyunsan Optical Astronomy Observatory in Korea on the same nights (2002 April and 2003 May) as the observations of the GC M92 (NGC 6341) reported by Cho and Lee using the same instrumental setup. The data for M53 is reduced using the same method as used for M92 by Cho and Lee, including preprocessing, point-spread function fitting photometry, and standardization etc. Therefore, M53 and M92 are on the same photometric system defined by Landolt, and the photometry of M53 and M92 is tied together as closely as possible. After complete photometric reduction, the V versus B − V , V versus V − I, and V versus B − I color-magnitude diagrams (CMDs) of M53 are produced to derive the relative ages of M53 and M92 and derive the various characteristics of its CMDs in future analysis. From the present analysis, the relative ages of M53 and M92 are derived using the Δ(B − V ) method reported by VandenBerg et al. The relative age of M53 is found to be 1.6 ± 0.85 Gyr younger than that of M92 if the absolute age of M92 is taken to be 14 Gyr. This relative age difference between M53 and M92 causes slight differences in the horizontal-branch morphology of these two GCs.
期刊介绍:
JKAS is an international scientific journal publishing papers in all fields of astronomy and astrophysics. All manuscripts are subject to the scrutiny of referees. Manuscripts submitted to JKAS must comply with the ethics policy of JKAS. Six regular issues are published each year on February 28, April 30, June 30, August 31, October 31, and December 31. One year''s issues compose one volume.