{"title":"粘结复合材料断裂特性的比较研究","authors":"N. Choupani, A. Torun","doi":"10.5267/j.esm.2021.8.001","DOIUrl":null,"url":null,"abstract":"Bonded joints have important benefits over conventional joining techniques such as rivets, welding, bolts and nuts in structural applications, particularly for components prepared of composite or polymeric materials. Due to the involvement of many geometric, material and construction variables, and the complex fracture and mechanical modes offered in the bonded joints, a proper consideration of fracture behavior is required to fully achieve their benefits. The fractures in bonded joints are mainly of three types; interlaminar (delamination), adhesive (interfacial) and cohesive crack. For a particular defect, crack propagation may occur in the tensile (mode I), the shear (mode II), and the tear (mode III) and their combinations (mixed mode). This study deals with topics such as theories of bonded composite joints and repairs, finite element analysis and fracture-based analysis and tests of mixed-mode cohesive, interfacial and interlaminar fracture mechanics. By employing geometrical factors extracted from finite element analysis and experimental results obtained from a modified Arcan test fixture, the mixed-mode cohesive, interfacial, and interlaminar fracture toughness are determined and fracture surfaces obtained are discussed.","PeriodicalId":37952,"journal":{"name":"Engineering Solid Mechanics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Fracture characterization of bonded composites: A comparative study\",\"authors\":\"N. Choupani, A. Torun\",\"doi\":\"10.5267/j.esm.2021.8.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bonded joints have important benefits over conventional joining techniques such as rivets, welding, bolts and nuts in structural applications, particularly for components prepared of composite or polymeric materials. Due to the involvement of many geometric, material and construction variables, and the complex fracture and mechanical modes offered in the bonded joints, a proper consideration of fracture behavior is required to fully achieve their benefits. The fractures in bonded joints are mainly of three types; interlaminar (delamination), adhesive (interfacial) and cohesive crack. For a particular defect, crack propagation may occur in the tensile (mode I), the shear (mode II), and the tear (mode III) and their combinations (mixed mode). This study deals with topics such as theories of bonded composite joints and repairs, finite element analysis and fracture-based analysis and tests of mixed-mode cohesive, interfacial and interlaminar fracture mechanics. By employing geometrical factors extracted from finite element analysis and experimental results obtained from a modified Arcan test fixture, the mixed-mode cohesive, interfacial, and interlaminar fracture toughness are determined and fracture surfaces obtained are discussed.\",\"PeriodicalId\":37952,\"journal\":{\"name\":\"Engineering Solid Mechanics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Solid Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5267/j.esm.2021.8.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Solid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5267/j.esm.2021.8.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
Fracture characterization of bonded composites: A comparative study
Bonded joints have important benefits over conventional joining techniques such as rivets, welding, bolts and nuts in structural applications, particularly for components prepared of composite or polymeric materials. Due to the involvement of many geometric, material and construction variables, and the complex fracture and mechanical modes offered in the bonded joints, a proper consideration of fracture behavior is required to fully achieve their benefits. The fractures in bonded joints are mainly of three types; interlaminar (delamination), adhesive (interfacial) and cohesive crack. For a particular defect, crack propagation may occur in the tensile (mode I), the shear (mode II), and the tear (mode III) and their combinations (mixed mode). This study deals with topics such as theories of bonded composite joints and repairs, finite element analysis and fracture-based analysis and tests of mixed-mode cohesive, interfacial and interlaminar fracture mechanics. By employing geometrical factors extracted from finite element analysis and experimental results obtained from a modified Arcan test fixture, the mixed-mode cohesive, interfacial, and interlaminar fracture toughness are determined and fracture surfaces obtained are discussed.
期刊介绍:
Engineering Solid Mechanics (ESM) is an online international journal for publishing high quality peer reviewed papers in the field of theoretical and applied solid mechanics. The primary focus is to exchange ideas about investigating behavior and properties of engineering materials (such as metals, composites, ceramics, polymers, FGMs, rocks and concretes, asphalt mixtures, bio and nano materials) and their mechanical characterization (including strength and deformation behavior, fatigue and fracture, stress measurements, etc.) through experimental, theoretical and numerical research studies. Researchers and practitioners (from deferent areas such as mechanical and manufacturing, aerospace, railway, bio-mechanics, civil and mining, materials and metallurgy, oil, gas and petroleum industries, pipeline, marine and offshore sectors) are encouraged to submit their original, unpublished contributions.