不锈钢316L与Ti6Al4V钛合金电阻点焊中铝夹层对焊缝强度的影响、显微组织分析及焊接参数优化

Q2 Materials Science Engineering Solid Mechanics Pub Date : 2022-01-01 DOI:10.5267/j.esm.2022.1.002
I. Taufiqurrahman, T. Ginta, Azlan Ahmad, M. Mustapha, I. Fatmahardi, I. Shozib
{"title":"不锈钢316L与Ti6Al4V钛合金电阻点焊中铝夹层对焊缝强度的影响、显微组织分析及焊接参数优化","authors":"I. Taufiqurrahman, T. Ginta, Azlan Ahmad, M. Mustapha, I. Fatmahardi, I. Shozib","doi":"10.5267/j.esm.2022.1.002","DOIUrl":null,"url":null,"abstract":"Stainless steel (SS) and Titanium alloy (Ti) are the most commonly used materials in many industrial fields such as the automotive and aerospace industry. Stainless steel has good corrosion resistance and titanium alloy has an extremely lightweight characteristic. The combination of both materials has become a tremendous innovation in the industrial sector. Resistance spot welding which has commonly applied in many industrial fields is a good consideration to join these two dissimilar materials due to the high efficiency that could be achieved by using this method. However, the way of joining these dissimilar materials should be carefully considered due to the significant difference in mechanical properties between SS and Ti. In the present study, 3 mm of SS316L and Ti6Al4V sheets were joint under the resistance spot welding method with an aluminum interlayer. The optimized welding parameters were provided under the Taguchi method L9 orthogonal array along with the mechanical properties’ investigation. The optimum welding parameters were 11 kA of weld current, 30 Cycles of welding time, and 5 kN of electrode force which produced 8.83 kN tensile-shear load of the joint. The mechanical structure analysis shows the different morphology between stainless steel and titanium interfaces and the intermetallic compound layer was formed on the SS/Al and Al/Ti interfaces. The EDX analysis shows the atomic diffusion-reaction on the application of aluminum as an interlayer on the SS/Ti joint.","PeriodicalId":37952,"journal":{"name":"Engineering Solid Mechanics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The effect of aluminum interlayer on weld strength, microstructure analysis, and welding parameters optimization in resistance spot welding of stainless steel 316L and Ti6Al4V titanium alloy\",\"authors\":\"I. Taufiqurrahman, T. Ginta, Azlan Ahmad, M. Mustapha, I. Fatmahardi, I. Shozib\",\"doi\":\"10.5267/j.esm.2022.1.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stainless steel (SS) and Titanium alloy (Ti) are the most commonly used materials in many industrial fields such as the automotive and aerospace industry. Stainless steel has good corrosion resistance and titanium alloy has an extremely lightweight characteristic. The combination of both materials has become a tremendous innovation in the industrial sector. Resistance spot welding which has commonly applied in many industrial fields is a good consideration to join these two dissimilar materials due to the high efficiency that could be achieved by using this method. However, the way of joining these dissimilar materials should be carefully considered due to the significant difference in mechanical properties between SS and Ti. In the present study, 3 mm of SS316L and Ti6Al4V sheets were joint under the resistance spot welding method with an aluminum interlayer. The optimized welding parameters were provided under the Taguchi method L9 orthogonal array along with the mechanical properties’ investigation. The optimum welding parameters were 11 kA of weld current, 30 Cycles of welding time, and 5 kN of electrode force which produced 8.83 kN tensile-shear load of the joint. The mechanical structure analysis shows the different morphology between stainless steel and titanium interfaces and the intermetallic compound layer was formed on the SS/Al and Al/Ti interfaces. The EDX analysis shows the atomic diffusion-reaction on the application of aluminum as an interlayer on the SS/Ti joint.\",\"PeriodicalId\":37952,\"journal\":{\"name\":\"Engineering Solid Mechanics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Solid Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5267/j.esm.2022.1.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Solid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5267/j.esm.2022.1.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 1

摘要

不锈钢(SS)和钛合金(Ti)是汽车和航空航天工业等许多工业领域最常用的材料。不锈钢具有良好的耐腐蚀性,钛合金具有极轻的特性。这两种材料的结合已经成为工业领域的巨大创新。电阻点焊在许多工业领域中都得到了广泛的应用,由于使用这种方法可以获得很高的效率,因此它是连接这两种不同材料的一个很好的考虑。然而,由于SS和Ti之间的力学性能存在显著差异,因此应仔细考虑这些不同材料的连接方式。本研究将3mm的SS316L板材与Ti6Al4V板材采用带铝中间层的电阻点焊方法连接。采用田口法L9正交阵列给出了优化后的焊接参数,并对其力学性能进行了研究。最佳焊接参数为焊接电流11 kA,焊接时间30个循环,电极力5 kN,焊接接头产生8.83 kN的拉伸剪切载荷。力学结构分析表明,不锈钢和钛界面形貌不同,在SS/Al和Al/Ti界面上形成了金属间化合物层。EDX分析表明,在SS/Ti接头上应用铝作为中间层发生了原子扩散反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The effect of aluminum interlayer on weld strength, microstructure analysis, and welding parameters optimization in resistance spot welding of stainless steel 316L and Ti6Al4V titanium alloy
Stainless steel (SS) and Titanium alloy (Ti) are the most commonly used materials in many industrial fields such as the automotive and aerospace industry. Stainless steel has good corrosion resistance and titanium alloy has an extremely lightweight characteristic. The combination of both materials has become a tremendous innovation in the industrial sector. Resistance spot welding which has commonly applied in many industrial fields is a good consideration to join these two dissimilar materials due to the high efficiency that could be achieved by using this method. However, the way of joining these dissimilar materials should be carefully considered due to the significant difference in mechanical properties between SS and Ti. In the present study, 3 mm of SS316L and Ti6Al4V sheets were joint under the resistance spot welding method with an aluminum interlayer. The optimized welding parameters were provided under the Taguchi method L9 orthogonal array along with the mechanical properties’ investigation. The optimum welding parameters were 11 kA of weld current, 30 Cycles of welding time, and 5 kN of electrode force which produced 8.83 kN tensile-shear load of the joint. The mechanical structure analysis shows the different morphology between stainless steel and titanium interfaces and the intermetallic compound layer was formed on the SS/Al and Al/Ti interfaces. The EDX analysis shows the atomic diffusion-reaction on the application of aluminum as an interlayer on the SS/Ti joint.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Solid Mechanics
Engineering Solid Mechanics Materials Science-Metals and Alloys
CiteScore
3.00
自引率
0.00%
发文量
21
期刊介绍: Engineering Solid Mechanics (ESM) is an online international journal for publishing high quality peer reviewed papers in the field of theoretical and applied solid mechanics. The primary focus is to exchange ideas about investigating behavior and properties of engineering materials (such as metals, composites, ceramics, polymers, FGMs, rocks and concretes, asphalt mixtures, bio and nano materials) and their mechanical characterization (including strength and deformation behavior, fatigue and fracture, stress measurements, etc.) through experimental, theoretical and numerical research studies. Researchers and practitioners (from deferent areas such as mechanical and manufacturing, aerospace, railway, bio-mechanics, civil and mining, materials and metallurgy, oil, gas and petroleum industries, pipeline, marine and offshore sectors) are encouraged to submit their original, unpublished contributions.
期刊最新文献
Combined hardening parameters of high strength steel under low cycle fatigue Design modification and performance evaluation of mini-hydrostatic pressure apparatus for inclined plane circular surface Comparison of different supervised machine learning algorithms for bead geometry prediction in GMAW process Impact of thickness, void content, temperature and loading rate on tensile fracture toughness and work of fracture of asphalt mixtures- An experimental study using the SCB test Experimental study on the behavior of polyamide multifilament subject to impact loads under different soaking conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1