{"title":"聚酯树脂棘草纤维增强复合材料拉伸、弯曲和硬度性能的试验研究","authors":"Belete Ambachew Mekonen, T. Bogale","doi":"10.5267/j.esm.2023.1.001","DOIUrl":null,"url":null,"abstract":"Nowadays, composites made of plant-based fibers may be used to polymer resin synthetic fiber reinforced composites since they are less expensive, renewable, abundant, less abrasive, and lightweight. Echinatus fiber obtained from the stem of the echinatus plant in an abundant amount. The main objective of this study was to develop echinatus polyester-resin fiber reinforced composite material and investigate its flexural strength, hardness and tensile strength. Echinatus plant was collected and echinatus fiber was extracted by the decortication process from the echinatus plants manually, and treated with 5% NaOH for the improvement of bond and interfacial shear strength. And then, the test specimens were manufactured using a mass fraction with 0 , 45 and 90 orientations using technique of hand lay-up. The tensile strength, hardness, and flexural strength were investigated using samples that were prepared according to the ASTM standards. 70% echinatus fiber to 30% polyester composite material with 0 orientation was found as the material with maximum tensile strength of 60.60 MPa, flexural strength of 96.8 MPa, and hardness values of 44.54 HRA. Considering the mechanical properties’ experimental results, echinatus fiber-reinforced composite with 70% fiber at 0 orientation can be good substitutes for synthetic materials.","PeriodicalId":37952,"journal":{"name":"Engineering Solid Mechanics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Experimental investigation of tensile, flexural and hardness properties of polyester resin echinatus fiber reinforced composite material\",\"authors\":\"Belete Ambachew Mekonen, T. Bogale\",\"doi\":\"10.5267/j.esm.2023.1.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, composites made of plant-based fibers may be used to polymer resin synthetic fiber reinforced composites since they are less expensive, renewable, abundant, less abrasive, and lightweight. Echinatus fiber obtained from the stem of the echinatus plant in an abundant amount. The main objective of this study was to develop echinatus polyester-resin fiber reinforced composite material and investigate its flexural strength, hardness and tensile strength. Echinatus plant was collected and echinatus fiber was extracted by the decortication process from the echinatus plants manually, and treated with 5% NaOH for the improvement of bond and interfacial shear strength. And then, the test specimens were manufactured using a mass fraction with 0 , 45 and 90 orientations using technique of hand lay-up. The tensile strength, hardness, and flexural strength were investigated using samples that were prepared according to the ASTM standards. 70% echinatus fiber to 30% polyester composite material with 0 orientation was found as the material with maximum tensile strength of 60.60 MPa, flexural strength of 96.8 MPa, and hardness values of 44.54 HRA. Considering the mechanical properties’ experimental results, echinatus fiber-reinforced composite with 70% fiber at 0 orientation can be good substitutes for synthetic materials.\",\"PeriodicalId\":37952,\"journal\":{\"name\":\"Engineering Solid Mechanics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Solid Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5267/j.esm.2023.1.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Solid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5267/j.esm.2023.1.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
Experimental investigation of tensile, flexural and hardness properties of polyester resin echinatus fiber reinforced composite material
Nowadays, composites made of plant-based fibers may be used to polymer resin synthetic fiber reinforced composites since they are less expensive, renewable, abundant, less abrasive, and lightweight. Echinatus fiber obtained from the stem of the echinatus plant in an abundant amount. The main objective of this study was to develop echinatus polyester-resin fiber reinforced composite material and investigate its flexural strength, hardness and tensile strength. Echinatus plant was collected and echinatus fiber was extracted by the decortication process from the echinatus plants manually, and treated with 5% NaOH for the improvement of bond and interfacial shear strength. And then, the test specimens were manufactured using a mass fraction with 0 , 45 and 90 orientations using technique of hand lay-up. The tensile strength, hardness, and flexural strength were investigated using samples that were prepared according to the ASTM standards. 70% echinatus fiber to 30% polyester composite material with 0 orientation was found as the material with maximum tensile strength of 60.60 MPa, flexural strength of 96.8 MPa, and hardness values of 44.54 HRA. Considering the mechanical properties’ experimental results, echinatus fiber-reinforced composite with 70% fiber at 0 orientation can be good substitutes for synthetic materials.
期刊介绍:
Engineering Solid Mechanics (ESM) is an online international journal for publishing high quality peer reviewed papers in the field of theoretical and applied solid mechanics. The primary focus is to exchange ideas about investigating behavior and properties of engineering materials (such as metals, composites, ceramics, polymers, FGMs, rocks and concretes, asphalt mixtures, bio and nano materials) and their mechanical characterization (including strength and deformation behavior, fatigue and fracture, stress measurements, etc.) through experimental, theoretical and numerical research studies. Researchers and practitioners (from deferent areas such as mechanical and manufacturing, aerospace, railway, bio-mechanics, civil and mining, materials and metallurgy, oil, gas and petroleum industries, pipeline, marine and offshore sectors) are encouraged to submit their original, unpublished contributions.