LncRNA NEAT1通过miR - 10b - 5p/BCL6轴介导的NLRP3转录抑制来缓解缺血性卒中。

IF 1.4 4区 医学 Q4 NEUROSCIENCES Acta neurobiologiae experimentalis Pub Date : 2022-03-31 DOI:10.55782/ane‑2022‑002
Zhi-Wen Zhou, Xiang Ren, Wen-Sheng Zhou, Ai-Ping Li, Lijun Zheng
{"title":"LncRNA NEAT1通过miR - 10b - 5p/BCL6轴介导的NLRP3转录抑制来缓解缺血性卒中。","authors":"Zhi-Wen Zhou, Xiang Ren, Wen-Sheng Zhou, Ai-Ping Li, Lijun Zheng","doi":"10.55782/ane‑2022‑002","DOIUrl":null,"url":null,"abstract":"Cerebral ischemic stroke (CIS) is a significant cause of disability and death. Inflammation usually occurs after CIS and accelerates cellular damage. NLRP3 plays a key role in the formation of CIS‑associated inflammasome. Understanding how NLRP3 is regulated bears great importance. We hypothesized that lncRNA NEAT1 can downregulate NLRP3 expression by regulating the miR‑10b‑5p/BCL6 axis, and thus regulate microglia‑driven inflammation. The expression of NEAT1 was analyzed in CIS patients and an in vitro model of oxygen and glucose deprivation/re‑oxygenation (OGD/R). We assessed the levels of pro‑inflammatory cytokines IL‑18 and IL‑1β with ELISA. Interactions between NEAT1/miR‑10b‑5p and miR‑10b‑5p/BCL6 were determined by luciferase assay. The interaction of BCL6 and NLRP3 was identified by ChIP; RNA, and protein levels were evaluated by qRT‑PCR and western blot, respectively. We found that NEAT1 level was decreased in CIS patients and OGD/R treated cells. OGD/R exerted pro‑inflammasome effects by increasing the expression of inflammasome‑associated proteins and ROS and malondialdehyde (MDA) while inhibiting SOD production. This effect was partially antagonized by NEAT1. We bioinformatically identified interactions between NEAT1/miR‑10b‑5p, BCL6/miR‑10b‑5p, and NLRP3‑promoter/BCL6, and validated them by luciferase assay, qRT‑PCR, and ChIP. NEAT1 inhibited miR‑10b‑5p and upregulated BCL6 by ceRNA mechanism and alleviated OGD/R induced cell damage. We also proved that BCL6 was a repressive transcription factor in the regulation of NLRP3 expression. Thus, lncRNA NEAT1 inhibited inflammasome activation by NLRP3 in microglia via the NEAT1/ miR‑10b‑5p/BCL6/NLRP3 regulatory axis, which alleviated deleterious outcomes of ischemic stroke.","PeriodicalId":7032,"journal":{"name":"Acta neurobiologiae experimentalis","volume":"5 1","pages":"12-21"},"PeriodicalIF":1.4000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"LncRNA NEAT1 alleviates ischemic stroke via transcriptional inhibition of NLRP3 mediated by the miR‑10b‑5p/BCL6 axis.\",\"authors\":\"Zhi-Wen Zhou, Xiang Ren, Wen-Sheng Zhou, Ai-Ping Li, Lijun Zheng\",\"doi\":\"10.55782/ane‑2022‑002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cerebral ischemic stroke (CIS) is a significant cause of disability and death. Inflammation usually occurs after CIS and accelerates cellular damage. NLRP3 plays a key role in the formation of CIS‑associated inflammasome. Understanding how NLRP3 is regulated bears great importance. We hypothesized that lncRNA NEAT1 can downregulate NLRP3 expression by regulating the miR‑10b‑5p/BCL6 axis, and thus regulate microglia‑driven inflammation. The expression of NEAT1 was analyzed in CIS patients and an in vitro model of oxygen and glucose deprivation/re‑oxygenation (OGD/R). We assessed the levels of pro‑inflammatory cytokines IL‑18 and IL‑1β with ELISA. Interactions between NEAT1/miR‑10b‑5p and miR‑10b‑5p/BCL6 were determined by luciferase assay. The interaction of BCL6 and NLRP3 was identified by ChIP; RNA, and protein levels were evaluated by qRT‑PCR and western blot, respectively. We found that NEAT1 level was decreased in CIS patients and OGD/R treated cells. OGD/R exerted pro‑inflammasome effects by increasing the expression of inflammasome‑associated proteins and ROS and malondialdehyde (MDA) while inhibiting SOD production. This effect was partially antagonized by NEAT1. We bioinformatically identified interactions between NEAT1/miR‑10b‑5p, BCL6/miR‑10b‑5p, and NLRP3‑promoter/BCL6, and validated them by luciferase assay, qRT‑PCR, and ChIP. NEAT1 inhibited miR‑10b‑5p and upregulated BCL6 by ceRNA mechanism and alleviated OGD/R induced cell damage. We also proved that BCL6 was a repressive transcription factor in the regulation of NLRP3 expression. Thus, lncRNA NEAT1 inhibited inflammasome activation by NLRP3 in microglia via the NEAT1/ miR‑10b‑5p/BCL6/NLRP3 regulatory axis, which alleviated deleterious outcomes of ischemic stroke.\",\"PeriodicalId\":7032,\"journal\":{\"name\":\"Acta neurobiologiae experimentalis\",\"volume\":\"5 1\",\"pages\":\"12-21\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta neurobiologiae experimentalis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.55782/ane‑2022‑002\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta neurobiologiae experimentalis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.55782/ane‑2022‑002","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 3

摘要

缺血性脑卒中(CIS)是致残和死亡的重要原因。炎症通常发生在CIS之后,并加速细胞损伤。NLRP3在CIS相关炎性体的形成中起关键作用。了解NLRP3是如何被调控的非常重要。我们假设lncRNA NEAT1可以通过调节miR - 10b - 5p/BCL6轴下调NLRP3的表达,从而调节小胶质细胞驱动的炎症。在CIS患者和体外氧葡萄糖剥夺/再氧合(OGD/R)模型中分析NEAT1的表达。我们用ELISA检测促炎细胞因子IL - 18和IL - 1β的水平。通过荧光素酶测定NEAT1/miR‑10b‑5p和miR‑10b‑5p/BCL6之间的相互作用。通过ChIP鉴定BCL6与NLRP3的相互作用;分别用qRT - PCR和western blot检测RNA和蛋白水平。我们发现在CIS患者和OGD/R处理的细胞中NEAT1水平降低。OGD/R通过增加炎性小体相关蛋白、ROS和丙二醛(MDA)的表达,同时抑制SOD的产生,发挥促炎性小体作用。该效应被NEAT1部分拮抗。我们从生物信息学上鉴定了NEAT1/miR‑10b‑5p、BCL6/miR‑10b‑5p和NLRP3‑启动子/BCL6之间的相互作用,并通过荧光素酶测定、qRT‑PCR和ChIP进行了验证。NEAT1通过ceRNA机制抑制miR - 10b - 5p,上调BCL6,减轻OGD/R诱导的细胞损伤。我们也证实了BCL6是一个抑制NLRP3表达的转录因子。因此,lncRNA NEAT1通过NEAT1/ miR - 10b - 5p/BCL6/NLRP3调控轴抑制小胶质细胞中NLRP3的炎性体激活,从而减轻缺血性卒中的有害后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LncRNA NEAT1 alleviates ischemic stroke via transcriptional inhibition of NLRP3 mediated by the miR‑10b‑5p/BCL6 axis.
Cerebral ischemic stroke (CIS) is a significant cause of disability and death. Inflammation usually occurs after CIS and accelerates cellular damage. NLRP3 plays a key role in the formation of CIS‑associated inflammasome. Understanding how NLRP3 is regulated bears great importance. We hypothesized that lncRNA NEAT1 can downregulate NLRP3 expression by regulating the miR‑10b‑5p/BCL6 axis, and thus regulate microglia‑driven inflammation. The expression of NEAT1 was analyzed in CIS patients and an in vitro model of oxygen and glucose deprivation/re‑oxygenation (OGD/R). We assessed the levels of pro‑inflammatory cytokines IL‑18 and IL‑1β with ELISA. Interactions between NEAT1/miR‑10b‑5p and miR‑10b‑5p/BCL6 were determined by luciferase assay. The interaction of BCL6 and NLRP3 was identified by ChIP; RNA, and protein levels were evaluated by qRT‑PCR and western blot, respectively. We found that NEAT1 level was decreased in CIS patients and OGD/R treated cells. OGD/R exerted pro‑inflammasome effects by increasing the expression of inflammasome‑associated proteins and ROS and malondialdehyde (MDA) while inhibiting SOD production. This effect was partially antagonized by NEAT1. We bioinformatically identified interactions between NEAT1/miR‑10b‑5p, BCL6/miR‑10b‑5p, and NLRP3‑promoter/BCL6, and validated them by luciferase assay, qRT‑PCR, and ChIP. NEAT1 inhibited miR‑10b‑5p and upregulated BCL6 by ceRNA mechanism and alleviated OGD/R induced cell damage. We also proved that BCL6 was a repressive transcription factor in the regulation of NLRP3 expression. Thus, lncRNA NEAT1 inhibited inflammasome activation by NLRP3 in microglia via the NEAT1/ miR‑10b‑5p/BCL6/NLRP3 regulatory axis, which alleviated deleterious outcomes of ischemic stroke.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
7.10%
发文量
40
审稿时长
>12 weeks
期刊介绍: Acta Neurobiologiae Experimentalis (ISSN: 0065-1400 (print), eISSN: 1689-0035) covers all aspects of neuroscience, from molecular and cellular neurobiology of the nervous system, through cellular and systems electrophysiology, brain imaging, functional and comparative neuroanatomy, development and evolution of the nervous system, behavior and neuropsychology to brain aging and pathology, including neuroinformatics and modeling.
期刊最新文献
Different faces of autism: Patients with mutations in PTEN and FMR1 genes. Leflunomide exerts neuroprotective effects in an MPTP‑treated mouse model of Parkinsonism. Piperine relieves neuropathic pain induced by paclitaxel in mice. Response of miRNA to treatment with Hypericum perforatum L. oil in multiple sclerosis. The integral role of PTEN in brain function: from neurogenesis to synaptic plasticity and social behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1