使用机器学习技术进行宫颈癌的早期预测

IF 0.9 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Jordanian Journal of Computers and Information Technology Pub Date : 2022-01-01 DOI:10.5455/jjcit.71-1661691447
Mohammad Batah, M. Alzyoud, Raed Alazaidah, Malek Toubat, Haneen Alzoubi, Areej Olaiyat
{"title":"使用机器学习技术进行宫颈癌的早期预测","authors":"Mohammad Batah, M. Alzyoud, Raed Alazaidah, Malek Toubat, Haneen Alzoubi, Areej Olaiyat","doi":"10.5455/jjcit.71-1661691447","DOIUrl":null,"url":null,"abstract":"According to recent studies and statistics, Cervical Cancer (CC) is one of the most common causes of death worldwide, and mainly in the developing countries. CC has a mortality rate around 60%, in less developing countries and the percentages could go even higher, due to poor screening processes, lack of sensitization, and several other reasons. Therefore, this paper aims to utilize the high capabilities of machine learning techniques in the early prediction of CC. In specific, three well-known feature selection and ranking methods have been used to identify the most significant features that help in the diagnosis process. Also, eighteen different classifiers that belong to six learning strategies have been trained and extensively evaluated against a primary data which consists of five hundred images. Moreover, an investigation regarding the problem of imbalance class distribution which is common in medical dataset is conducted. The results revealed that LWNB and RandomForest classifiers showed the best performance in general, and considering four different evaluation metrics. Also, LWNB and Logistic classifiers were the best choices to handle the problem of imbalance class distribution which is common in medical diagnosis task. The final conclusion could be made is that using an ensemble model which consists of several classifiers such as LWNB, RandomForest, and Logistic is the best solution to handle this type of problems.","PeriodicalId":36757,"journal":{"name":"Jordanian Journal of Computers and Information Technology","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"EARLY PREDICTION OF CERVICAL CANCER USING MACHINE LEARNING TECHNIQUES\",\"authors\":\"Mohammad Batah, M. Alzyoud, Raed Alazaidah, Malek Toubat, Haneen Alzoubi, Areej Olaiyat\",\"doi\":\"10.5455/jjcit.71-1661691447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to recent studies and statistics, Cervical Cancer (CC) is one of the most common causes of death worldwide, and mainly in the developing countries. CC has a mortality rate around 60%, in less developing countries and the percentages could go even higher, due to poor screening processes, lack of sensitization, and several other reasons. Therefore, this paper aims to utilize the high capabilities of machine learning techniques in the early prediction of CC. In specific, three well-known feature selection and ranking methods have been used to identify the most significant features that help in the diagnosis process. Also, eighteen different classifiers that belong to six learning strategies have been trained and extensively evaluated against a primary data which consists of five hundred images. Moreover, an investigation regarding the problem of imbalance class distribution which is common in medical dataset is conducted. The results revealed that LWNB and RandomForest classifiers showed the best performance in general, and considering four different evaluation metrics. Also, LWNB and Logistic classifiers were the best choices to handle the problem of imbalance class distribution which is common in medical diagnosis task. The final conclusion could be made is that using an ensemble model which consists of several classifiers such as LWNB, RandomForest, and Logistic is the best solution to handle this type of problems.\",\"PeriodicalId\":36757,\"journal\":{\"name\":\"Jordanian Journal of Computers and Information Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jordanian Journal of Computers and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5455/jjcit.71-1661691447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordanian Journal of Computers and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5455/jjcit.71-1661691447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

根据最近的研究和统计,宫颈癌是全世界最常见的死亡原因之一,主要发生在发展中国家。在欠发展中国家,CC的死亡率约为60%,由于筛查程序不完善、缺乏致敏和其他几个原因,这一比例可能会更高。因此,本文旨在利用机器学习技术在CC早期预测中的高能力。具体而言,我们使用了三种众所周知的特征选择和排序方法来识别有助于诊断过程的最重要特征。此外,已经训练了属于六种学习策略的十八种不同的分类器,并对由500张图像组成的原始数据进行了广泛的评估。此外,还对医学数据集中常见的类分布不平衡问题进行了研究。结果表明,LWNB和RandomForest分类器在考虑四种不同的评价指标时,总体上表现出最好的性能。LWNB和Logistic分类器是处理医学诊断任务中常见的类分布不平衡问题的最佳选择。最后可以得出的结论是,使用由几个分类器(如LWNB、RandomForest和Logistic)组成的集成模型是处理这类问题的最佳解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EARLY PREDICTION OF CERVICAL CANCER USING MACHINE LEARNING TECHNIQUES
According to recent studies and statistics, Cervical Cancer (CC) is one of the most common causes of death worldwide, and mainly in the developing countries. CC has a mortality rate around 60%, in less developing countries and the percentages could go even higher, due to poor screening processes, lack of sensitization, and several other reasons. Therefore, this paper aims to utilize the high capabilities of machine learning techniques in the early prediction of CC. In specific, three well-known feature selection and ranking methods have been used to identify the most significant features that help in the diagnosis process. Also, eighteen different classifiers that belong to six learning strategies have been trained and extensively evaluated against a primary data which consists of five hundred images. Moreover, an investigation regarding the problem of imbalance class distribution which is common in medical dataset is conducted. The results revealed that LWNB and RandomForest classifiers showed the best performance in general, and considering four different evaluation metrics. Also, LWNB and Logistic classifiers were the best choices to handle the problem of imbalance class distribution which is common in medical diagnosis task. The final conclusion could be made is that using an ensemble model which consists of several classifiers such as LWNB, RandomForest, and Logistic is the best solution to handle this type of problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Jordanian Journal of Computers and Information Technology
Jordanian Journal of Computers and Information Technology Computer Science-Computer Science (all)
CiteScore
3.10
自引率
25.00%
发文量
19
期刊最新文献
OPTIMAL ENERGY CONSUMPTION AND COST PERFORMANCE SOLUTION WITH DELAY CONSTRAINTS ON FOG COMPUTING ORTHOGONAL REGRESSED STEEPEST DESCENT DEEP PERCEPTIVE NEURAL LEARNING FOR IoT- AWARE SECURED BIG DATA COMMUNICATION AUTOMATIC DETECTION OF PNEUMONIA USING CONCATENATED CONVOLUTIONAL NEURAL NETWORK DESIGN OF A COMPACT BROADBAND ANTENNA USING CHARACTERISTIC MODE ANALYSIS FOR MICROWAVE APPLICATIONS Effectiveness of zero-shot models in automatic Arabic Poem generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1