Khadija Abouhssous, L. Wakrim, A. Zugari, A. Zakriti
{"title":"一种采用遗传算法优化的缺陷接地结构的三波段贴片天线,用于现代无线移动应用","authors":"Khadija Abouhssous, L. Wakrim, A. Zugari, A. Zakriti","doi":"10.5455/jjcit.71-1667052517","DOIUrl":null,"url":null,"abstract":"This paper presents a design and optimization approach for a tri-band miniature planar rectangular patch antenna structure for wireless mobile applications. The tri-band operation while maintaining a compact size has been achieved by introducing a defected ground structure (DGS) to control the surface current distribution on the patch antenna and consequently achieve multi-band operation. The geometry of the patch and the position of the DGS were optimized by a genetic algorithm to achieve the desired performance using a simple and miniature design with an area of 16 mm × 20 mm × 1.6 mm, an 82% reduction in the area occupied by a conventional single-band structure used in the optimization process. The proposed GA-optimised antenna provided tri-band operation with bandwidths for |?11| > 6 from 3.2 - 3.5 GHz, 5.5 - 5.9 GHz and 6.3 - 7.1 GHz. At the centre frequencies of 3.4, 5.7 and 6.7 GHz, the peak gains were 0.7, 1.76 and 2.93 dB, respectively. The optimally designed antenna is etched on an FR-4 substrate. Simulation and measurement results show good agreement, making the proposed structure a suitable candidate for mobile applications requiring small and multifunctional telecommunication devices.","PeriodicalId":36757,"journal":{"name":"Jordanian Journal of Computers and Information Technology","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A THREE-BAND PATCH ANTENNA USING A DEFECTED GROUND STRUCTURE OPTIMIZED BY A GENETIC ALGORITHM FOR THE MODERN WIRELESS MOBILE APPLICATIONS\",\"authors\":\"Khadija Abouhssous, L. Wakrim, A. Zugari, A. Zakriti\",\"doi\":\"10.5455/jjcit.71-1667052517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a design and optimization approach for a tri-band miniature planar rectangular patch antenna structure for wireless mobile applications. The tri-band operation while maintaining a compact size has been achieved by introducing a defected ground structure (DGS) to control the surface current distribution on the patch antenna and consequently achieve multi-band operation. The geometry of the patch and the position of the DGS were optimized by a genetic algorithm to achieve the desired performance using a simple and miniature design with an area of 16 mm × 20 mm × 1.6 mm, an 82% reduction in the area occupied by a conventional single-band structure used in the optimization process. The proposed GA-optimised antenna provided tri-band operation with bandwidths for |?11| > 6 from 3.2 - 3.5 GHz, 5.5 - 5.9 GHz and 6.3 - 7.1 GHz. At the centre frequencies of 3.4, 5.7 and 6.7 GHz, the peak gains were 0.7, 1.76 and 2.93 dB, respectively. The optimally designed antenna is etched on an FR-4 substrate. Simulation and measurement results show good agreement, making the proposed structure a suitable candidate for mobile applications requiring small and multifunctional telecommunication devices.\",\"PeriodicalId\":36757,\"journal\":{\"name\":\"Jordanian Journal of Computers and Information Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jordanian Journal of Computers and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5455/jjcit.71-1667052517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordanian Journal of Computers and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5455/jjcit.71-1667052517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A THREE-BAND PATCH ANTENNA USING A DEFECTED GROUND STRUCTURE OPTIMIZED BY A GENETIC ALGORITHM FOR THE MODERN WIRELESS MOBILE APPLICATIONS
This paper presents a design and optimization approach for a tri-band miniature planar rectangular patch antenna structure for wireless mobile applications. The tri-band operation while maintaining a compact size has been achieved by introducing a defected ground structure (DGS) to control the surface current distribution on the patch antenna and consequently achieve multi-band operation. The geometry of the patch and the position of the DGS were optimized by a genetic algorithm to achieve the desired performance using a simple and miniature design with an area of 16 mm × 20 mm × 1.6 mm, an 82% reduction in the area occupied by a conventional single-band structure used in the optimization process. The proposed GA-optimised antenna provided tri-band operation with bandwidths for |?11| > 6 from 3.2 - 3.5 GHz, 5.5 - 5.9 GHz and 6.3 - 7.1 GHz. At the centre frequencies of 3.4, 5.7 and 6.7 GHz, the peak gains were 0.7, 1.76 and 2.93 dB, respectively. The optimally designed antenna is etched on an FR-4 substrate. Simulation and measurement results show good agreement, making the proposed structure a suitable candidate for mobile applications requiring small and multifunctional telecommunication devices.