{"title":"双波段大卫分形微带贴片天线用于GSM和WiMAX应用","authors":"Jacob Abraham, T. Mathew","doi":"10.4236/WET.2015.62004","DOIUrl":null,"url":null,"abstract":"The design and development of a proximity fed dualband microstrip patch antenna based on David fractal geometry are presented. David fractal microstrip antenna offers good performance in the 1.754 - 1.816 GHz and 3.37 - 3.415 GHz bands and is suitable for GSM 1800, WiMAX applications. The use of David fractal geometry offers miniaturization of the antenna structure. The proposed first iteration fractal configuration is fabricated and measured results along with simulation results are presented. Good radiation patterns and moderate gain are also obtained.","PeriodicalId":68067,"journal":{"name":"无线工程与技术(英文)","volume":"06 1","pages":"33-40"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Dual Band David Fractal Microstrip Patch Antenna for GSM and WiMAX Applications\",\"authors\":\"Jacob Abraham, T. Mathew\",\"doi\":\"10.4236/WET.2015.62004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design and development of a proximity fed dualband microstrip patch antenna based on David fractal geometry are presented. David fractal microstrip antenna offers good performance in the 1.754 - 1.816 GHz and 3.37 - 3.415 GHz bands and is suitable for GSM 1800, WiMAX applications. The use of David fractal geometry offers miniaturization of the antenna structure. The proposed first iteration fractal configuration is fabricated and measured results along with simulation results are presented. Good radiation patterns and moderate gain are also obtained.\",\"PeriodicalId\":68067,\"journal\":{\"name\":\"无线工程与技术(英文)\",\"volume\":\"06 1\",\"pages\":\"33-40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"无线工程与技术(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/WET.2015.62004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"无线工程与技术(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/WET.2015.62004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dual Band David Fractal Microstrip Patch Antenna for GSM and WiMAX Applications
The design and development of a proximity fed dualband microstrip patch antenna based on David fractal geometry are presented. David fractal microstrip antenna offers good performance in the 1.754 - 1.816 GHz and 3.37 - 3.415 GHz bands and is suitable for GSM 1800, WiMAX applications. The use of David fractal geometry offers miniaturization of the antenna structure. The proposed first iteration fractal configuration is fabricated and measured results along with simulation results are presented. Good radiation patterns and moderate gain are also obtained.