I. Šećerov, D. Dolinaj, D. Pavić, D. Milošević, S. Savić, Srdan Popov, Zarko Zivanov
{"title":"环境监察系统:回顾与未来发展","authors":"I. Šećerov, D. Dolinaj, D. Pavić, D. Milošević, S. Savić, Srdan Popov, Zarko Zivanov","doi":"10.4236/wet.2019.101001","DOIUrl":null,"url":null,"abstract":"Monitoring and recording large time series of data and making them available for studying—are the key roles of environmental monitoring systems. This study produce review of three different measurement monitoring systems (NSUNET, WAHASTRAT and MERIEXWA) with same design, which were placed during different time frame in the Northern Serbia (Vojvodina Province). Each of three monitoring systems has different demands and requirements which were addressed accordingly in their design. Power supply conditions for two systems are primary cells and solar panels, while NSUNET has constant power supply only during nighttime. Data is transmitted in MERIEXWA using binary protocol, WAHASTRAT using http, while NSUNET sends data over ftp. Same topology is used in all systems—each node sends data directly to the central location (in case of NSUNET two locations are provided for backup purposes). NSUNET system sends data using specific structure and stores them as plain text files. It also has different approach for time synchronization and monitoring issues. The main result of this study is to present how to create system that provides good quality and unchanged data from monitoring sensor to the end user while maintaining whole data structure transmission costs low. Furthermore, data collected from NSUNET were used in order to assess the influence of urbanization on regional climate modification, which leads to the creation of urban climate. Propositions for new system development combining best from all three systems are discussed.","PeriodicalId":68067,"journal":{"name":"无线工程与技术(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Environmental Monitoring Systems: Review and Future Development\",\"authors\":\"I. Šećerov, D. Dolinaj, D. Pavić, D. Milošević, S. Savić, Srdan Popov, Zarko Zivanov\",\"doi\":\"10.4236/wet.2019.101001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitoring and recording large time series of data and making them available for studying—are the key roles of environmental monitoring systems. This study produce review of three different measurement monitoring systems (NSUNET, WAHASTRAT and MERIEXWA) with same design, which were placed during different time frame in the Northern Serbia (Vojvodina Province). Each of three monitoring systems has different demands and requirements which were addressed accordingly in their design. Power supply conditions for two systems are primary cells and solar panels, while NSUNET has constant power supply only during nighttime. Data is transmitted in MERIEXWA using binary protocol, WAHASTRAT using http, while NSUNET sends data over ftp. Same topology is used in all systems—each node sends data directly to the central location (in case of NSUNET two locations are provided for backup purposes). NSUNET system sends data using specific structure and stores them as plain text files. It also has different approach for time synchronization and monitoring issues. The main result of this study is to present how to create system that provides good quality and unchanged data from monitoring sensor to the end user while maintaining whole data structure transmission costs low. Furthermore, data collected from NSUNET were used in order to assess the influence of urbanization on regional climate modification, which leads to the creation of urban climate. Propositions for new system development combining best from all three systems are discussed.\",\"PeriodicalId\":68067,\"journal\":{\"name\":\"无线工程与技术(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"无线工程与技术(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/wet.2019.101001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"无线工程与技术(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/wet.2019.101001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Environmental Monitoring Systems: Review and Future Development
Monitoring and recording large time series of data and making them available for studying—are the key roles of environmental monitoring systems. This study produce review of three different measurement monitoring systems (NSUNET, WAHASTRAT and MERIEXWA) with same design, which were placed during different time frame in the Northern Serbia (Vojvodina Province). Each of three monitoring systems has different demands and requirements which were addressed accordingly in their design. Power supply conditions for two systems are primary cells and solar panels, while NSUNET has constant power supply only during nighttime. Data is transmitted in MERIEXWA using binary protocol, WAHASTRAT using http, while NSUNET sends data over ftp. Same topology is used in all systems—each node sends data directly to the central location (in case of NSUNET two locations are provided for backup purposes). NSUNET system sends data using specific structure and stores them as plain text files. It also has different approach for time synchronization and monitoring issues. The main result of this study is to present how to create system that provides good quality and unchanged data from monitoring sensor to the end user while maintaining whole data structure transmission costs low. Furthermore, data collected from NSUNET were used in order to assess the influence of urbanization on regional climate modification, which leads to the creation of urban climate. Propositions for new system development combining best from all three systems are discussed.