观察到的LIBS信号从纳米和体氧化锌靶增强:等离子体参数的比较研究

A. M. E. Sherbini, A. Aboulfotouh, F. F. Rashid, S. Allam, Ashraf El Dakrouri, T. E. Sherbini
{"title":"观察到的LIBS信号从纳米和体氧化锌靶增强:等离子体参数的比较研究","authors":"A. M. E. Sherbini, A. Aboulfotouh, F. F. Rashid, S. Allam, Ashraf El Dakrouri, T. E. Sherbini","doi":"10.4236/WJNSE.2012.24024","DOIUrl":null,"url":null,"abstract":"In this article, we will report an experimental evidence of enhanced LIBS emission upon replacing a Bulk-Based ZnO target by the corresponding Nano-Based target. The plasma was initiated via interaction of a Nd:YAG laser at the fundamental wavelength with both targets in open air under the same experimental conditions. The measurements show an enhanced emission from the Zn I-lines at the wavelengths of 328.26, 330.29, 334.55, 468.06, 472.2, 481.01, 636.38 nm. The measurements were repeated at different delay times in the range from 1 to 5 μs at constant irradiation level and fixed gate time of 1 μs. The average enhancement over the different Zn I-lines was found increases exponentially up to 8-fold with delay time. The electron density to each plasma was measured utilizing the Hα-line appeared in the emitted spectra from each plasma and was found to give similar values. The electron temperatures were measured via Boltzmann plot method utilizing the relative intensities of the Zn I-lines and were found to give very close values. Moreover, the relative population density of the ground state of the zinc atoms (relative concentration) was measured spectroscopically utilizing the Boltzmann plot method and was found to increase in a very similar trend to that of enhancement. The results of the spectroscopic analysis conclude that these signal enhancements can be attributed to the higher concentration of neutral atoms in the Nano-Based material plasma with respect to the corresponding Bulk-based ZnO material.","PeriodicalId":66816,"journal":{"name":"纳米科学与工程(英文)","volume":"02 1","pages":"181-188"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4236/WJNSE.2012.24024","citationCount":"29","resultStr":"{\"title\":\"Observed Enhancement in LIBS Signals from Nano vs. Bulk ZnO Targets: Comparative Study of Plasma Parameters\",\"authors\":\"A. M. E. Sherbini, A. Aboulfotouh, F. F. Rashid, S. Allam, Ashraf El Dakrouri, T. E. Sherbini\",\"doi\":\"10.4236/WJNSE.2012.24024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we will report an experimental evidence of enhanced LIBS emission upon replacing a Bulk-Based ZnO target by the corresponding Nano-Based target. The plasma was initiated via interaction of a Nd:YAG laser at the fundamental wavelength with both targets in open air under the same experimental conditions. The measurements show an enhanced emission from the Zn I-lines at the wavelengths of 328.26, 330.29, 334.55, 468.06, 472.2, 481.01, 636.38 nm. The measurements were repeated at different delay times in the range from 1 to 5 μs at constant irradiation level and fixed gate time of 1 μs. The average enhancement over the different Zn I-lines was found increases exponentially up to 8-fold with delay time. The electron density to each plasma was measured utilizing the Hα-line appeared in the emitted spectra from each plasma and was found to give similar values. The electron temperatures were measured via Boltzmann plot method utilizing the relative intensities of the Zn I-lines and were found to give very close values. Moreover, the relative population density of the ground state of the zinc atoms (relative concentration) was measured spectroscopically utilizing the Boltzmann plot method and was found to increase in a very similar trend to that of enhancement. The results of the spectroscopic analysis conclude that these signal enhancements can be attributed to the higher concentration of neutral atoms in the Nano-Based material plasma with respect to the corresponding Bulk-based ZnO material.\",\"PeriodicalId\":66816,\"journal\":{\"name\":\"纳米科学与工程(英文)\",\"volume\":\"02 1\",\"pages\":\"181-188\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4236/WJNSE.2012.24024\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"纳米科学与工程(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/WJNSE.2012.24024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"纳米科学与工程(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/WJNSE.2012.24024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

在这篇文章中,我们将报告用相应的纳米基靶取代体基ZnO靶后LIBS发射增强的实验证据。等离子体是在相同的实验条件下,通过一个基本波长的Nd:YAG激光与两个露天目标的相互作用而产生的。测量结果表明,在328.26、330.29、334.55、468.06、472.2、481.01、636.38 nm波长处,Zn - i线的发射增强。在恒定辐照水平和固定栅极时间为1 μs的条件下,以1 ~ 5 μs的不同延迟时间重复测量。随着延迟时间的增加,在不同Zn - i线上的平均增强呈指数增长,达到8倍。利用各等离子体发射光谱中出现的h α线测量了各等离子体的电子密度,发现其值相似。电子温度通过玻尔兹曼图法测量,利用相对强度的Zn - i线,发现给出非常接近的值。此外,利用玻尔兹曼图方法测量了锌原子基态的相对居群密度(相对浓度),发现其增加的趋势与增强的趋势非常相似。光谱分析结果表明,这些信号增强可归因于纳米基材料等离子体中中性原子的浓度高于相应的体基ZnO材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Observed Enhancement in LIBS Signals from Nano vs. Bulk ZnO Targets: Comparative Study of Plasma Parameters
In this article, we will report an experimental evidence of enhanced LIBS emission upon replacing a Bulk-Based ZnO target by the corresponding Nano-Based target. The plasma was initiated via interaction of a Nd:YAG laser at the fundamental wavelength with both targets in open air under the same experimental conditions. The measurements show an enhanced emission from the Zn I-lines at the wavelengths of 328.26, 330.29, 334.55, 468.06, 472.2, 481.01, 636.38 nm. The measurements were repeated at different delay times in the range from 1 to 5 μs at constant irradiation level and fixed gate time of 1 μs. The average enhancement over the different Zn I-lines was found increases exponentially up to 8-fold with delay time. The electron density to each plasma was measured utilizing the Hα-line appeared in the emitted spectra from each plasma and was found to give similar values. The electron temperatures were measured via Boltzmann plot method utilizing the relative intensities of the Zn I-lines and were found to give very close values. Moreover, the relative population density of the ground state of the zinc atoms (relative concentration) was measured spectroscopically utilizing the Boltzmann plot method and was found to increase in a very similar trend to that of enhancement. The results of the spectroscopic analysis conclude that these signal enhancements can be attributed to the higher concentration of neutral atoms in the Nano-Based material plasma with respect to the corresponding Bulk-based ZnO material.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
103
期刊最新文献
Preparation of Antimicrobial Iron Oxide Nanostructures from Galvanizning Effluent Application of Corona Charge Deposition Technique in Thin Film Industry Nanoparticles Modified Electrodes: Synthesis, Modification, and Characterization—A Review Effects of R134a Saturation Temperature on a Shell and Tube Condenser with the Nanofluid Flow in the Tube Using the Thermal Efficiency and Effectiveness Concepts Er3+ and Er3+/Yb3+ Ions Embedded in Nano-Structure BaTi0.9Sn0.1O3: Structure, Morphology and Dielectric Properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1