铜镍复合材料电极的制备及其电容性能

Xiuxia Zhang, Chaohui Li, Qianyu Ji
{"title":"铜镍复合材料电极的制备及其电容性能","authors":"Xiuxia Zhang, Chaohui Li, Qianyu Ji","doi":"10.4236/WJNSE.2016.64015","DOIUrl":null,"url":null,"abstract":"Nickel oxide/copper oxide composites are prepared. Then the composites were transferred into autoclave and thermal sinter under different temperature and different time. As-prepared composites were analyzed by XRD, and it was concluded that with the increase of hydrothermal time, content of NiO and Ni0.75Cu0.25O increases, but particles become smaller; it would improve the electrochemical activity. By SEM images directed lower crystallinity of composites, deeper porosity and rougher surface would have better electrochemical activity. The electrochemical performance was investigated by cyclic voltametry, AC impedance and galvanostatic charge-discharge. All results show that under the condition of 150°C 30 h, the electrochemical performance is the best. The specific capacitance was 225.67 F&middotg-1 at the charge-discharge current of 1 A&middotg-1.","PeriodicalId":66816,"journal":{"name":"纳米科学与工程(英文)","volume":"06 1","pages":"165-176"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Preparation of Electrode of Copper-Nickel Composite Material and Its Capacitance Performance\",\"authors\":\"Xiuxia Zhang, Chaohui Li, Qianyu Ji\",\"doi\":\"10.4236/WJNSE.2016.64015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nickel oxide/copper oxide composites are prepared. Then the composites were transferred into autoclave and thermal sinter under different temperature and different time. As-prepared composites were analyzed by XRD, and it was concluded that with the increase of hydrothermal time, content of NiO and Ni0.75Cu0.25O increases, but particles become smaller; it would improve the electrochemical activity. By SEM images directed lower crystallinity of composites, deeper porosity and rougher surface would have better electrochemical activity. The electrochemical performance was investigated by cyclic voltametry, AC impedance and galvanostatic charge-discharge. All results show that under the condition of 150°C 30 h, the electrochemical performance is the best. The specific capacitance was 225.67 F&middotg-1 at the charge-discharge current of 1 A&middotg-1.\",\"PeriodicalId\":66816,\"journal\":{\"name\":\"纳米科学与工程(英文)\",\"volume\":\"06 1\",\"pages\":\"165-176\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"纳米科学与工程(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/WJNSE.2016.64015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"纳米科学与工程(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/WJNSE.2016.64015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

制备了氧化镍/氧化铜复合材料。然后在不同温度和时间下将复合材料送入热压釜和热烧结。通过XRD对制备的复合材料进行了分析,结果表明:随着水热时间的延长,NiO和Ni0.75Cu0.25O的含量增加,但颗粒变小;它会提高电化学活性。SEM图像显示,结晶度越低、孔隙度越深、表面越粗糙的复合材料具有更好的电化学活性。采用循环伏安法、交流阻抗法和恒流充放电法对其电化学性能进行了研究。结果表明,在150℃30 h的条件下,电化学性能最好。充放电电流为1a· -1时,比电容为225.67 f· -1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparation of Electrode of Copper-Nickel Composite Material and Its Capacitance Performance
Nickel oxide/copper oxide composites are prepared. Then the composites were transferred into autoclave and thermal sinter under different temperature and different time. As-prepared composites were analyzed by XRD, and it was concluded that with the increase of hydrothermal time, content of NiO and Ni0.75Cu0.25O increases, but particles become smaller; it would improve the electrochemical activity. By SEM images directed lower crystallinity of composites, deeper porosity and rougher surface would have better electrochemical activity. The electrochemical performance was investigated by cyclic voltametry, AC impedance and galvanostatic charge-discharge. All results show that under the condition of 150°C 30 h, the electrochemical performance is the best. The specific capacitance was 225.67 F·g-1 at the charge-discharge current of 1 A·g-1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
103
期刊最新文献
Preparation of Antimicrobial Iron Oxide Nanostructures from Galvanizning Effluent Application of Corona Charge Deposition Technique in Thin Film Industry Nanoparticles Modified Electrodes: Synthesis, Modification, and Characterization—A Review Effects of R134a Saturation Temperature on a Shell and Tube Condenser with the Nanofluid Flow in the Tube Using the Thermal Efficiency and Effectiveness Concepts Er3+ and Er3+/Yb3+ Ions Embedded in Nano-Structure BaTi0.9Sn0.1O3: Structure, Morphology and Dielectric Properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1