Christos Barbagiannis, Alexios A Polydorou, M. Zervakis, A. Polydorou, Eleftheria Sergaki
{"title":"基于二元cnn的胃肠道异常多分类工具中血管扩张和出血的检测","authors":"Christos Barbagiannis, Alexios A Polydorou, M. Zervakis, A. Polydorou, Eleftheria Sergaki","doi":"10.4236/jbise.2021.1412034","DOIUrl":null,"url":null,"abstract":"The proposed deep learning algorithm will be integrated as a binary classifier under the umbrella of a multi-class classification tool to facilitate the automated detection of non-healthy deformities, anatomical landmarks, pathological findings, other anomalies and normal cases, by examining medical endoscopic images of GI tract. Each binary classifier is trained to detect one specific non-healthy condition. The algorithm analyzed in the present work expands the ability of detection of this tool by classifying GI tract image snapshots into two classes, depicting haemorrhage and non-haemorrhage state. The proposed algorithm","PeriodicalId":64231,"journal":{"name":"生物医学工程(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detection of Angioectasias and Haemorrhages Incorporated into a Multi-Class Classification Tool for the GI Tract Anomalies by Using Binary CNNs\",\"authors\":\"Christos Barbagiannis, Alexios A Polydorou, M. Zervakis, A. Polydorou, Eleftheria Sergaki\",\"doi\":\"10.4236/jbise.2021.1412034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proposed deep learning algorithm will be integrated as a binary classifier under the umbrella of a multi-class classification tool to facilitate the automated detection of non-healthy deformities, anatomical landmarks, pathological findings, other anomalies and normal cases, by examining medical endoscopic images of GI tract. Each binary classifier is trained to detect one specific non-healthy condition. The algorithm analyzed in the present work expands the ability of detection of this tool by classifying GI tract image snapshots into two classes, depicting haemorrhage and non-haemorrhage state. The proposed algorithm\",\"PeriodicalId\":64231,\"journal\":{\"name\":\"生物医学工程(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物医学工程(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.4236/jbise.2021.1412034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/jbise.2021.1412034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detection of Angioectasias and Haemorrhages Incorporated into a Multi-Class Classification Tool for the GI Tract Anomalies by Using Binary CNNs
The proposed deep learning algorithm will be integrated as a binary classifier under the umbrella of a multi-class classification tool to facilitate the automated detection of non-healthy deformities, anatomical landmarks, pathological findings, other anomalies and normal cases, by examining medical endoscopic images of GI tract. Each binary classifier is trained to detect one specific non-healthy condition. The algorithm analyzed in the present work expands the ability of detection of this tool by classifying GI tract image snapshots into two classes, depicting haemorrhage and non-haemorrhage state. The proposed algorithm