研究TiO2纳米管层对细菌污染影响的慢性异物感染模型的可行性

C. Vorilhon, C. Massard, V. Raspal, Y. Sibaud, C. Forestier, N. Charbonnel, S. Descamps, K. Awitor
{"title":"研究TiO2纳米管层对细菌污染影响的慢性异物感染模型的可行性","authors":"C. Vorilhon, C. Massard, V. Raspal, Y. Sibaud, C. Forestier, N. Charbonnel, S. Descamps, K. Awitor","doi":"10.4236/JBNB.2016.71006","DOIUrl":null,"url":null,"abstract":"Bacterial infections on the surface of medical devices are a significant problem in therapeutic approach, especially when implants are used in the living. In cardiology, pacemaker generator pocket surfaces, made in titanium alloy can be colonized by pathogen microorganism. This contamination represents a major risk of sepsis, endocarditis and localized infections for patients. A way to limit this bacterial contamination is to modify the surface topography using nano-structuration process of the titanium alloy surface of the implanted devices. The aim of this study is to evaluate the influence of TiO2 nanotube layers on bacterial infection in the living, considering the feasibility of an animal model of chronic foreign body infection. TiO2 nanotube layers prepared by electrochemical anodization of Ti foil in 0.4 wt% hydrofluoric acid solution were implanted subcutaneously in Wistar rats. Three weeks after implantation, TiO2 implants were contaminated by a Staphylococcus epidermilis strain using two different concentrations at 106 and 108 colony forming unit (CFU) in order to induce a sufficient infection level and to avoid unwanted over infection consequences on rats health during the experiments. After 28 days in the living, 75% of nanotube layers initially submitted to the 108 CFU inoculum were contaminated while only 25% nanotube layers initially submitted to the 106 CFU inoculum remained infected. This significant result underlines the influence of TiO2 nanotube layers in decreasing the infection level. Our in vitro experiments showed that the synthesized TiO2 nanotubes indeed decreased the Staphylococcus epidermilis adhesion compared to unanodized Ti foil.","PeriodicalId":68623,"journal":{"name":"生物材料与纳米技术(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Feasibility of a Chronic Foreign Body Infection Model Studying the Influence of TiO2 Nanotube Layers on Bacterial Contamination\",\"authors\":\"C. Vorilhon, C. Massard, V. Raspal, Y. Sibaud, C. Forestier, N. Charbonnel, S. Descamps, K. Awitor\",\"doi\":\"10.4236/JBNB.2016.71006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bacterial infections on the surface of medical devices are a significant problem in therapeutic approach, especially when implants are used in the living. In cardiology, pacemaker generator pocket surfaces, made in titanium alloy can be colonized by pathogen microorganism. This contamination represents a major risk of sepsis, endocarditis and localized infections for patients. A way to limit this bacterial contamination is to modify the surface topography using nano-structuration process of the titanium alloy surface of the implanted devices. The aim of this study is to evaluate the influence of TiO2 nanotube layers on bacterial infection in the living, considering the feasibility of an animal model of chronic foreign body infection. TiO2 nanotube layers prepared by electrochemical anodization of Ti foil in 0.4 wt% hydrofluoric acid solution were implanted subcutaneously in Wistar rats. Three weeks after implantation, TiO2 implants were contaminated by a Staphylococcus epidermilis strain using two different concentrations at 106 and 108 colony forming unit (CFU) in order to induce a sufficient infection level and to avoid unwanted over infection consequences on rats health during the experiments. After 28 days in the living, 75% of nanotube layers initially submitted to the 108 CFU inoculum were contaminated while only 25% nanotube layers initially submitted to the 106 CFU inoculum remained infected. This significant result underlines the influence of TiO2 nanotube layers in decreasing the infection level. Our in vitro experiments showed that the synthesized TiO2 nanotubes indeed decreased the Staphylococcus epidermilis adhesion compared to unanodized Ti foil.\",\"PeriodicalId\":68623,\"journal\":{\"name\":\"生物材料与纳米技术(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物材料与纳米技术(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/JBNB.2016.71006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物材料与纳米技术(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/JBNB.2016.71006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

医疗器械表面的细菌感染是治疗方法中的一个重要问题,特别是当植入物用于生活时。在心脏病学中,由钛合金制成的起搏器发电机口袋表面可以被病原体微生物定植。这种污染是患者脓毒症、心内膜炎和局部感染的主要风险。限制这种细菌污染的一种方法是利用植入装置的钛合金表面的纳米结构工艺来改变表面形貌。本研究的目的是评估TiO2纳米管层对活体细菌感染的影响,考虑慢性异物感染动物模型的可行性。将钛箔在0.4 wt%的氢氟酸溶液中电化学阳极氧化制备的TiO2纳米管层植入Wistar大鼠皮下。植入3周后,采用106和108菌落形成单位(CFU)两种不同浓度对TiO2植入物进行污染,以诱导足够的感染水平,避免实验期间对大鼠健康造成不必要的过度感染后果。28天后,最初接种108 CFU的纳米管层中有75%被污染,而最初接种106 CFU的纳米管层中只有25%被感染。这一重要结果强调了TiO2纳米管层对降低感染水平的影响。我们的体外实验表明,与未氧化的钛箔相比,合成的TiO2纳米管确实降低了表皮葡萄球菌的粘附。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feasibility of a Chronic Foreign Body Infection Model Studying the Influence of TiO2 Nanotube Layers on Bacterial Contamination
Bacterial infections on the surface of medical devices are a significant problem in therapeutic approach, especially when implants are used in the living. In cardiology, pacemaker generator pocket surfaces, made in titanium alloy can be colonized by pathogen microorganism. This contamination represents a major risk of sepsis, endocarditis and localized infections for patients. A way to limit this bacterial contamination is to modify the surface topography using nano-structuration process of the titanium alloy surface of the implanted devices. The aim of this study is to evaluate the influence of TiO2 nanotube layers on bacterial infection in the living, considering the feasibility of an animal model of chronic foreign body infection. TiO2 nanotube layers prepared by electrochemical anodization of Ti foil in 0.4 wt% hydrofluoric acid solution were implanted subcutaneously in Wistar rats. Three weeks after implantation, TiO2 implants were contaminated by a Staphylococcus epidermilis strain using two different concentrations at 106 and 108 colony forming unit (CFU) in order to induce a sufficient infection level and to avoid unwanted over infection consequences on rats health during the experiments. After 28 days in the living, 75% of nanotube layers initially submitted to the 108 CFU inoculum were contaminated while only 25% nanotube layers initially submitted to the 106 CFU inoculum remained infected. This significant result underlines the influence of TiO2 nanotube layers in decreasing the infection level. Our in vitro experiments showed that the synthesized TiO2 nanotubes indeed decreased the Staphylococcus epidermilis adhesion compared to unanodized Ti foil.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
317
期刊最新文献
The Role of Biosynthesized Metallic and Metal Oxide Nanoparticles in Combating Anti-Microbial Drug Resilient Pathogens In Vitro Evaluation of Two Tissue Substitutes for Gingival Augmentation Comparison between Four Types of Buffers for DNA Agarose Gel Electrophoresis Toxicity and Molecular Mechanisms of Actions of Silver Nanoparticles Natural Nanoskin Advanced Cell Therapy (ACT) and Nanoskin ACT Soft towards the Definitive Solution for Acute and Chronic Wounds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1