C. Massard, Clémence Dubois, V. Raspal, Pierre Daumar, Y. Sibaud, E. Mounetou, M. Bamdad, O. Awitor
{"title":"金纳米颗粒对基底样三阴性HCC-1937乳腺癌细胞株的细胞毒性研究","authors":"C. Massard, Clémence Dubois, V. Raspal, Pierre Daumar, Y. Sibaud, E. Mounetou, M. Bamdad, O. Awitor","doi":"10.4236/JBNB.2018.91002","DOIUrl":null,"url":null,"abstract":"The Triple Negative “Basal-like” breast cancer (TNBL) tumours have a high proliferative capacity and develop a resistance phenotype associated with metastases. However, the management of TNBL carcinomas is still not standardized. Among the promising trails, gold nanoparticles could be a relevant tool for the development of a targeted treatment for this breast cancer subtype in monotherapy, associated and/or conjugated with other drugs. In this work, we report the cytotoxicity impact of gold nanoparticles wrapped in Poly-Ethylene Glycol (PEG) on the TNBL HCC-1937 breast cancer cell line. PEG-coated gold nanoparticles (PEG-Au NPs) were synthesized by a two-step method using a reduction process followed by a post-functionalization called PEGylation. PEG-Au NPs were characterized using transmission electron microscopy and X-ray diffraction. The gold content of the samples was determined using atomic absorption spectrometer. The cytotoxicity tests were performed using Sulforhodamine B survival test and resazurin viability test. PEG-Au NPs impact analysis on HCC1937 TNBL cell line showed a clear toxic action of type dose dependent and at long term. These PEGylated gold nanoparticles present a promising tool for the development of tumor-specific radiosensitizing vectors, with or without the association of other treatment strategies.","PeriodicalId":68623,"journal":{"name":"生物材料与纳米技术(英文)","volume":"09 1","pages":"13-25"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Cytotoxicity Study of Gold Nanoparticles on the Basal-Like Triple-Negative HCC-1937 Breast Cancer Cell Line\",\"authors\":\"C. Massard, Clémence Dubois, V. Raspal, Pierre Daumar, Y. Sibaud, E. Mounetou, M. Bamdad, O. Awitor\",\"doi\":\"10.4236/JBNB.2018.91002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Triple Negative “Basal-like” breast cancer (TNBL) tumours have a high proliferative capacity and develop a resistance phenotype associated with metastases. However, the management of TNBL carcinomas is still not standardized. Among the promising trails, gold nanoparticles could be a relevant tool for the development of a targeted treatment for this breast cancer subtype in monotherapy, associated and/or conjugated with other drugs. In this work, we report the cytotoxicity impact of gold nanoparticles wrapped in Poly-Ethylene Glycol (PEG) on the TNBL HCC-1937 breast cancer cell line. PEG-coated gold nanoparticles (PEG-Au NPs) were synthesized by a two-step method using a reduction process followed by a post-functionalization called PEGylation. PEG-Au NPs were characterized using transmission electron microscopy and X-ray diffraction. The gold content of the samples was determined using atomic absorption spectrometer. The cytotoxicity tests were performed using Sulforhodamine B survival test and resazurin viability test. PEG-Au NPs impact analysis on HCC1937 TNBL cell line showed a clear toxic action of type dose dependent and at long term. These PEGylated gold nanoparticles present a promising tool for the development of tumor-specific radiosensitizing vectors, with or without the association of other treatment strategies.\",\"PeriodicalId\":68623,\"journal\":{\"name\":\"生物材料与纳米技术(英文)\",\"volume\":\"09 1\",\"pages\":\"13-25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物材料与纳米技术(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/JBNB.2018.91002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物材料与纳米技术(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/JBNB.2018.91002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cytotoxicity Study of Gold Nanoparticles on the Basal-Like Triple-Negative HCC-1937 Breast Cancer Cell Line
The Triple Negative “Basal-like” breast cancer (TNBL) tumours have a high proliferative capacity and develop a resistance phenotype associated with metastases. However, the management of TNBL carcinomas is still not standardized. Among the promising trails, gold nanoparticles could be a relevant tool for the development of a targeted treatment for this breast cancer subtype in monotherapy, associated and/or conjugated with other drugs. In this work, we report the cytotoxicity impact of gold nanoparticles wrapped in Poly-Ethylene Glycol (PEG) on the TNBL HCC-1937 breast cancer cell line. PEG-coated gold nanoparticles (PEG-Au NPs) were synthesized by a two-step method using a reduction process followed by a post-functionalization called PEGylation. PEG-Au NPs were characterized using transmission electron microscopy and X-ray diffraction. The gold content of the samples was determined using atomic absorption spectrometer. The cytotoxicity tests were performed using Sulforhodamine B survival test and resazurin viability test. PEG-Au NPs impact analysis on HCC1937 TNBL cell line showed a clear toxic action of type dose dependent and at long term. These PEGylated gold nanoparticles present a promising tool for the development of tumor-specific radiosensitizing vectors, with or without the association of other treatment strategies.