碘包覆铂电极阳极溶出伏安法测定深水井中的铁

IF 1.1 Q4 ELECTROCHEMISTRY Portugaliae Electrochimica Acta Pub Date : 2021-01-01 DOI:10.4152/pea.2021390604
M. Amayreh, M. Hourani, R. Alomari, W. Hourani
{"title":"碘包覆铂电极阳极溶出伏安法测定深水井中的铁","authors":"M. Amayreh, M. Hourani, R. Alomari, W. Hourani","doi":"10.4152/pea.2021390604","DOIUrl":null,"url":null,"abstract":"The presented work was pivoted on iron (II) determination in deep groundwater wells samples by using anodic stripping technique at an iodine-coated platinum electrode. The developed method was based on a preconcentration step for five min., followed by the potential scanning of an iodine-coated platinum electrode between the limit of hydrogen evolution (-0.25 V) and the beginning of iodine desorption from the electrode surface (+0.85 V). The anodic peak of the deposited iron to iron (II) oxidation was clearly centered at ca. 0.74 V. The anodic peak current showed an excellent linear response (R 2 = 0.996), within an iron (II) concentration range from 1 to 100 ppm. The obtained limit of detection (LOD) was 0.26 ppm and the limit of quantification (LOQ) was 0.85 ppm. Within the iodine-coated platinum electrode potential window the possible interferences by several ions were evaluated. The developed method was examined by iron (II) concentration determination in deep groundwater wells. The statistical comparisons between the two methods showed the absence of any significant difference between the obtained Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) values and our voltammetric method results, at P = 0.05. iron (II) determination; deep groundwater; stripping voltammetry and iodine-coated platinum electrode.","PeriodicalId":20334,"journal":{"name":"Portugaliae Electrochimica Acta","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Iron Determination in Deep Groundwater Wells by Anodic Stripping Voltammetry at an Iodine-Coated Platinum Electrode\",\"authors\":\"M. Amayreh, M. Hourani, R. Alomari, W. Hourani\",\"doi\":\"10.4152/pea.2021390604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The presented work was pivoted on iron (II) determination in deep groundwater wells samples by using anodic stripping technique at an iodine-coated platinum electrode. The developed method was based on a preconcentration step for five min., followed by the potential scanning of an iodine-coated platinum electrode between the limit of hydrogen evolution (-0.25 V) and the beginning of iodine desorption from the electrode surface (+0.85 V). The anodic peak of the deposited iron to iron (II) oxidation was clearly centered at ca. 0.74 V. The anodic peak current showed an excellent linear response (R 2 = 0.996), within an iron (II) concentration range from 1 to 100 ppm. The obtained limit of detection (LOD) was 0.26 ppm and the limit of quantification (LOQ) was 0.85 ppm. Within the iodine-coated platinum electrode potential window the possible interferences by several ions were evaluated. The developed method was examined by iron (II) concentration determination in deep groundwater wells. The statistical comparisons between the two methods showed the absence of any significant difference between the obtained Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) values and our voltammetric method results, at P = 0.05. iron (II) determination; deep groundwater; stripping voltammetry and iodine-coated platinum electrode.\",\"PeriodicalId\":20334,\"journal\":{\"name\":\"Portugaliae Electrochimica Acta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Portugaliae Electrochimica Acta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4152/pea.2021390604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Portugaliae Electrochimica Acta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4152/pea.2021390604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了在碘包覆铂电极上阳极溶出法测定深水井样品中的铁(II)。该方法先进行5 min的预富集,然后对镀碘铂电极在析氢极限(-0.25 V)和电极表面碘解吸开始(+0.85 V)之间进行电位扫描,沉积的铁到铁(II)氧化的阳极峰明显集中在约0.74 V处。在铁(II)浓度为1 ~ 100 ppm范围内,阳极峰值电流表现出良好的线性响应(r2 = 0.996)。所得样品的检出限为0.26 ppm,定量限为0.85 ppm。在碘包覆铂电极电位窗口内,对几种离子可能的干扰进行了评价。用深水井铁(II)浓度测定对所建立的方法进行了验证。两种方法之间的统计比较表明,电感耦合等离子体光学发射光谱(ICP-OES)值与伏安法结果之间没有显著差异,P = 0.05。铁(II)测定;深层地下水;溶出伏安法与碘包覆铂电极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Iron Determination in Deep Groundwater Wells by Anodic Stripping Voltammetry at an Iodine-Coated Platinum Electrode
The presented work was pivoted on iron (II) determination in deep groundwater wells samples by using anodic stripping technique at an iodine-coated platinum electrode. The developed method was based on a preconcentration step for five min., followed by the potential scanning of an iodine-coated platinum electrode between the limit of hydrogen evolution (-0.25 V) and the beginning of iodine desorption from the electrode surface (+0.85 V). The anodic peak of the deposited iron to iron (II) oxidation was clearly centered at ca. 0.74 V. The anodic peak current showed an excellent linear response (R 2 = 0.996), within an iron (II) concentration range from 1 to 100 ppm. The obtained limit of detection (LOD) was 0.26 ppm and the limit of quantification (LOQ) was 0.85 ppm. Within the iodine-coated platinum electrode potential window the possible interferences by several ions were evaluated. The developed method was examined by iron (II) concentration determination in deep groundwater wells. The statistical comparisons between the two methods showed the absence of any significant difference between the obtained Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) values and our voltammetric method results, at P = 0.05. iron (II) determination; deep groundwater; stripping voltammetry and iodine-coated platinum electrode.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
16.70%
发文量
17
期刊介绍: Portugaliae Electrochimica Acta is a bi-monthly Journal published by the Portuguese Electrochemical Society since 1983. Portugaliae Electrochimica Acta publishes original papers, brief communications, reviews and letters concerned with every aspect of theory and practice of electrochemistry, as well as articles in which topics on history, science policy, education, etc. in the electrochemical field (teaching or research) may be discussed.
期刊最新文献
Anodic Treatment of Ni-Cu Alloy in a Deep Eutectic Solvent to Improve Electrocatalytic Activity in the Hydrogen Evolution Reaction Corrosion Resistance, Electrochemical and Surface Morphology Studies of Mild Steel in a Sulfuric Acid Medium by using Dibutyl Sulphide Recovery of Strategic Metals from Tungsten Carbide-Cobalt Bonded Waste by Electrochemical Processing Stainless 37 Steel Corrosion Inhibition in a Hydrochloric Acid Solution with Senggani (Melastoma Candidum D. Don) Leaf Extract Tribological Behavior of Inconel 718 Nickel-Based Super Alloy Doped with Graphene Nanoplatelets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1