{"title":"用PCR验证瓜爪哇番石榴向蓝桉的硅微卫星可移植性","authors":"F. Medeiros, Cátia Santos, A. Costa","doi":"10.4238/gmr18985","DOIUrl":null,"url":null,"abstract":"BLAST is a genomic local alignment search tool used to identify homology between genotypes and possible orthologous genes. In vitro microsatellite transferability is a strategy to enable or increase species molecular fingerprinting, but it is dependent on PCR technique. An initial in silico step using BLAST for transferability can be helpful to save resources in pre-selecting markers more likely to amplify. We aligned and transfered SSR sequences from Psidium guajava to Eucalyptus globulus using BLAST. Twenty-three SSR clone sequences from P. guajava (query) were retrieved from the NCBI website and aligned against the whole genome of E. globulus (subject) using a cut-off e-value<1.00e −20 . Another 140 loci retrieved from the GuavaMap project were analyzed using as parameters e-values<1.7 and a maximum distance of 300 nucleotides between forward and reverse sequences. All loci were analyzed using BLASTN with MEGABLAST optimization. DNA extraction of four eucalypt trees was performed with the 2x CTAB protocol containing a sorbitol initial step. Validation of the SSR selected via BLASTN was performed by PCR reactions with 12 loci (seven selected on Blast hits and five without hits) and posterior visualization on polyacrylamide gel. Nine out of 23 microsatellite loci were transferable in the in silico, with a mean identity of 87%. With regard to the GuavaMap microsatellite loci, only three showed significant","PeriodicalId":12518,"journal":{"name":"Genetics and Molecular Research","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research Article In silico microsatellite transferability from Psidium guajava to Eucalyptus globulus validated by PCR\",\"authors\":\"F. Medeiros, Cátia Santos, A. Costa\",\"doi\":\"10.4238/gmr18985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BLAST is a genomic local alignment search tool used to identify homology between genotypes and possible orthologous genes. In vitro microsatellite transferability is a strategy to enable or increase species molecular fingerprinting, but it is dependent on PCR technique. An initial in silico step using BLAST for transferability can be helpful to save resources in pre-selecting markers more likely to amplify. We aligned and transfered SSR sequences from Psidium guajava to Eucalyptus globulus using BLAST. Twenty-three SSR clone sequences from P. guajava (query) were retrieved from the NCBI website and aligned against the whole genome of E. globulus (subject) using a cut-off e-value<1.00e −20 . Another 140 loci retrieved from the GuavaMap project were analyzed using as parameters e-values<1.7 and a maximum distance of 300 nucleotides between forward and reverse sequences. All loci were analyzed using BLASTN with MEGABLAST optimization. DNA extraction of four eucalypt trees was performed with the 2x CTAB protocol containing a sorbitol initial step. Validation of the SSR selected via BLASTN was performed by PCR reactions with 12 loci (seven selected on Blast hits and five without hits) and posterior visualization on polyacrylamide gel. Nine out of 23 microsatellite loci were transferable in the in silico, with a mean identity of 87%. With regard to the GuavaMap microsatellite loci, only three showed significant\",\"PeriodicalId\":12518,\"journal\":{\"name\":\"Genetics and Molecular Research\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics and Molecular Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4238/gmr18985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics and Molecular Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4238/gmr18985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Research Article In silico microsatellite transferability from Psidium guajava to Eucalyptus globulus validated by PCR
BLAST is a genomic local alignment search tool used to identify homology between genotypes and possible orthologous genes. In vitro microsatellite transferability is a strategy to enable or increase species molecular fingerprinting, but it is dependent on PCR technique. An initial in silico step using BLAST for transferability can be helpful to save resources in pre-selecting markers more likely to amplify. We aligned and transfered SSR sequences from Psidium guajava to Eucalyptus globulus using BLAST. Twenty-three SSR clone sequences from P. guajava (query) were retrieved from the NCBI website and aligned against the whole genome of E. globulus (subject) using a cut-off e-value<1.00e −20 . Another 140 loci retrieved from the GuavaMap project were analyzed using as parameters e-values<1.7 and a maximum distance of 300 nucleotides between forward and reverse sequences. All loci were analyzed using BLASTN with MEGABLAST optimization. DNA extraction of four eucalypt trees was performed with the 2x CTAB protocol containing a sorbitol initial step. Validation of the SSR selected via BLASTN was performed by PCR reactions with 12 loci (seven selected on Blast hits and five without hits) and posterior visualization on polyacrylamide gel. Nine out of 23 microsatellite loci were transferable in the in silico, with a mean identity of 87%. With regard to the GuavaMap microsatellite loci, only three showed significant
期刊介绍:
Genetics and Molecular Research (GMR), maintained by the Research Foundation of Ribeirão Preto (Fundação de Pesquisas Científicas de Ribeirão Preto), publishes high quality research in genetics and molecular biology. GMR reflects the full breadth and interdisciplinary nature of this research by publishing outstanding original contributions in all areas of biology.
GMR publishes human studies, as well as research on model organisms—from mice and flies, to plants and bacteria. Our emphasis is on studies of broad interest that provide significant insight into a biological process or processes. Topics include, but are not limited to gene discovery and function, population genetics, evolution, genome projects, comparative and functional genomics, molecular analysis of simple and complex genetic traits, cancer genetics, medical genetics, disease biology, agricultural genomics, developmental genetics, regulatory variation in gene expression, pharmacological genomics, evolution, gene expression, chromosome biology, and epigenetics.