{"title":"苦克酸盐L-Valinium单晶的光学和介电研究","authors":"P. Koteeswari, P. Mani, S. Suresh","doi":"10.4236/JCPT.2012.23015","DOIUrl":null,"url":null,"abstract":"Single crystals of L-Valinium picrate were grown from aqueous solution by slow evaporation technique. Single crystal X-ray diffraction analysis reveals that the crystal belongs to monoclinic system. The optical transmission study reveals the transparency of the crystal in the entire visible region and the cut off wave length has been found to be 470 nm. The optical band gap is found to be 2.55 eV. The transmittance of L-Valinium picrate crystal has been used to calculate the refractive index (n), the extinction coefficient (K) and both the real (er) and imaginary (ei) components of the dielectric constant as functions of wavelength. Low dielectric loss at high frequency region is indicative of enhanced optical quality with lesser defects. Photoconductivity measurements carried out on the grown crystal reveal the negative photoconducting nature.","PeriodicalId":64440,"journal":{"name":"结晶过程及技术期刊(英文)","volume":"2012 1","pages":"117-120"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Optical and Dielectric Studies on L-Valinium Picrate Single Crystal\",\"authors\":\"P. Koteeswari, P. Mani, S. Suresh\",\"doi\":\"10.4236/JCPT.2012.23015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single crystals of L-Valinium picrate were grown from aqueous solution by slow evaporation technique. Single crystal X-ray diffraction analysis reveals that the crystal belongs to monoclinic system. The optical transmission study reveals the transparency of the crystal in the entire visible region and the cut off wave length has been found to be 470 nm. The optical band gap is found to be 2.55 eV. The transmittance of L-Valinium picrate crystal has been used to calculate the refractive index (n), the extinction coefficient (K) and both the real (er) and imaginary (ei) components of the dielectric constant as functions of wavelength. Low dielectric loss at high frequency region is indicative of enhanced optical quality with lesser defects. Photoconductivity measurements carried out on the grown crystal reveal the negative photoconducting nature.\",\"PeriodicalId\":64440,\"journal\":{\"name\":\"结晶过程及技术期刊(英文)\",\"volume\":\"2012 1\",\"pages\":\"117-120\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"结晶过程及技术期刊(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.4236/JCPT.2012.23015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"结晶过程及技术期刊(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/JCPT.2012.23015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optical and Dielectric Studies on L-Valinium Picrate Single Crystal
Single crystals of L-Valinium picrate were grown from aqueous solution by slow evaporation technique. Single crystal X-ray diffraction analysis reveals that the crystal belongs to monoclinic system. The optical transmission study reveals the transparency of the crystal in the entire visible region and the cut off wave length has been found to be 470 nm. The optical band gap is found to be 2.55 eV. The transmittance of L-Valinium picrate crystal has been used to calculate the refractive index (n), the extinction coefficient (K) and both the real (er) and imaginary (ei) components of the dielectric constant as functions of wavelength. Low dielectric loss at high frequency region is indicative of enhanced optical quality with lesser defects. Photoconductivity measurements carried out on the grown crystal reveal the negative photoconducting nature.