{"title":"脉冲激光沉积法生长氧化镓纳米线","authors":"H. Yamahara, M. Seki, H. Tabata","doi":"10.4236/JCPT.2012.24017","DOIUrl":null,"url":null,"abstract":"We report on the synthesis of gallium oxide nanowires by pulsed laser deposition using a gold catalyst. In the vapor-liquid-solid process, gold thickness was the crucial parameter for deciding the morphology of nanowires. In the case of 1 nm thick gold, homogeneous nanowire growth was confirmed at temperatures of 700°C to 850°C. Transmission electron microscopy and selected area electron diffraction measurements showed that the nanowires were polycrystalline. In the cathode luminescence spectra, UV, blue, green and red emission peaks were observed, as reported in previous studies. As growth temperature was increased, the relative intensities of blue, green, and red emissions decreased. Thermal annealing treatments were effective in decreasing the blue, green and red emission peaks, suggesting that these emission peaks were associated with oxygen vacancies.","PeriodicalId":64440,"journal":{"name":"结晶过程及技术期刊(英文)","volume":"2012 1","pages":"125-129"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Growth of Gallium Oxide Nanowires by Pulsed Laser Deposition\",\"authors\":\"H. Yamahara, M. Seki, H. Tabata\",\"doi\":\"10.4236/JCPT.2012.24017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report on the synthesis of gallium oxide nanowires by pulsed laser deposition using a gold catalyst. In the vapor-liquid-solid process, gold thickness was the crucial parameter for deciding the morphology of nanowires. In the case of 1 nm thick gold, homogeneous nanowire growth was confirmed at temperatures of 700°C to 850°C. Transmission electron microscopy and selected area electron diffraction measurements showed that the nanowires were polycrystalline. In the cathode luminescence spectra, UV, blue, green and red emission peaks were observed, as reported in previous studies. As growth temperature was increased, the relative intensities of blue, green, and red emissions decreased. Thermal annealing treatments were effective in decreasing the blue, green and red emission peaks, suggesting that these emission peaks were associated with oxygen vacancies.\",\"PeriodicalId\":64440,\"journal\":{\"name\":\"结晶过程及技术期刊(英文)\",\"volume\":\"2012 1\",\"pages\":\"125-129\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"结晶过程及技术期刊(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.4236/JCPT.2012.24017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"结晶过程及技术期刊(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/JCPT.2012.24017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Growth of Gallium Oxide Nanowires by Pulsed Laser Deposition
We report on the synthesis of gallium oxide nanowires by pulsed laser deposition using a gold catalyst. In the vapor-liquid-solid process, gold thickness was the crucial parameter for deciding the morphology of nanowires. In the case of 1 nm thick gold, homogeneous nanowire growth was confirmed at temperatures of 700°C to 850°C. Transmission electron microscopy and selected area electron diffraction measurements showed that the nanowires were polycrystalline. In the cathode luminescence spectra, UV, blue, green and red emission peaks were observed, as reported in previous studies. As growth temperature was increased, the relative intensities of blue, green, and red emissions decreased. Thermal annealing treatments were effective in decreasing the blue, green and red emission peaks, suggesting that these emission peaks were associated with oxygen vacancies.