液晶热成像技术在特定技术和医学应用中的应用-最新进展

J. Stasiek, M. Jewartowski, T. Kowalewski
{"title":"液晶热成像技术在特定技术和医学应用中的应用-最新进展","authors":"J. Stasiek, M. Jewartowski, T. Kowalewski","doi":"10.4236/JCPT.2014.41007","DOIUrl":null,"url":null,"abstract":"Thermochromic liquid crystals (TLC) and true-colour digital image processing have been successfully used in non-intrusive technical, industrial and biomedical studies and applications. Thin coatings of TLC at surfaces are utilized to obtain detailed temperature distributions and heat transfer rates for steady or transient processes. Liquid crystals also can be used to make the temperature and velocity fields in liquids visible by the simple expedient of directly mixing the liquid crystal material into the liquid (water, glycerol, glycol, and silicone oils) in very small quantities to use as thermal and hydrodynamic tracers. In biomedical situations, e.g., skin diseases, breast cancer, blood circulation and other medical application, TLC and image processing are successfully used as an additional non-invasive diagnostic method especially useful for screening large groups of potential patients. The history of this technique is reviewed, principal methods and tools are described and some examples are presented. Also steady-state and transient liquid crystal thermography (LCT) is used to measure local heat transfer on a plate equipped with transverse vortex generators. Automated evaluation allows determining the heat transfer coefficient without arbitrary influence of human interpretation.","PeriodicalId":64440,"journal":{"name":"结晶过程及技术期刊(英文)","volume":"4 1","pages":"46-59"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"The Use of Liquid Crystal Thermography in Selected Technical and Medical Applications—Recent Development\",\"authors\":\"J. Stasiek, M. Jewartowski, T. Kowalewski\",\"doi\":\"10.4236/JCPT.2014.41007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermochromic liquid crystals (TLC) and true-colour digital image processing have been successfully used in non-intrusive technical, industrial and biomedical studies and applications. Thin coatings of TLC at surfaces are utilized to obtain detailed temperature distributions and heat transfer rates for steady or transient processes. Liquid crystals also can be used to make the temperature and velocity fields in liquids visible by the simple expedient of directly mixing the liquid crystal material into the liquid (water, glycerol, glycol, and silicone oils) in very small quantities to use as thermal and hydrodynamic tracers. In biomedical situations, e.g., skin diseases, breast cancer, blood circulation and other medical application, TLC and image processing are successfully used as an additional non-invasive diagnostic method especially useful for screening large groups of potential patients. The history of this technique is reviewed, principal methods and tools are described and some examples are presented. Also steady-state and transient liquid crystal thermography (LCT) is used to measure local heat transfer on a plate equipped with transverse vortex generators. Automated evaluation allows determining the heat transfer coefficient without arbitrary influence of human interpretation.\",\"PeriodicalId\":64440,\"journal\":{\"name\":\"结晶过程及技术期刊(英文)\",\"volume\":\"4 1\",\"pages\":\"46-59\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"结晶过程及技术期刊(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.4236/JCPT.2014.41007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"结晶过程及技术期刊(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/JCPT.2014.41007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

热致变色液晶(TLC)和真彩色数字图像处理已成功地应用于非侵入式技术,工业和生物医学研究和应用。表面薄层TLC涂层用于获得稳定或瞬态过程的详细温度分布和传热率。通过将液晶材料直接混入液体(水、甘油、乙二醇和硅油)中作为热和流体动力学示踪剂,液晶也可以用来显示液体中的温度和速度场。在生物医学领域,如皮肤病、乳腺癌、血液循环和其他医学应用中,TLC和图像处理被成功地用作一种额外的非侵入性诊断方法,特别适用于筛选大量潜在患者。回顾了该技术的发展历史,介绍了主要的方法和工具,并给出了一些实例。本文还利用稳态和瞬态液晶热像仪(LCT)测量了装有横向涡发生器的平板上的局部传热。自动评估允许确定传热系数没有人为解释的任意影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Use of Liquid Crystal Thermography in Selected Technical and Medical Applications—Recent Development
Thermochromic liquid crystals (TLC) and true-colour digital image processing have been successfully used in non-intrusive technical, industrial and biomedical studies and applications. Thin coatings of TLC at surfaces are utilized to obtain detailed temperature distributions and heat transfer rates for steady or transient processes. Liquid crystals also can be used to make the temperature and velocity fields in liquids visible by the simple expedient of directly mixing the liquid crystal material into the liquid (water, glycerol, glycol, and silicone oils) in very small quantities to use as thermal and hydrodynamic tracers. In biomedical situations, e.g., skin diseases, breast cancer, blood circulation and other medical application, TLC and image processing are successfully used as an additional non-invasive diagnostic method especially useful for screening large groups of potential patients. The history of this technique is reviewed, principal methods and tools are described and some examples are presented. Also steady-state and transient liquid crystal thermography (LCT) is used to measure local heat transfer on a plate equipped with transverse vortex generators. Automated evaluation allows determining the heat transfer coefficient without arbitrary influence of human interpretation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
71
期刊最新文献
Coordination Polymer of Cobalt (ΙΙ) Nitrate with Imidazole: Synthesis, Properties and Crystal Structure Synthesis, Characterization and Crystal Structures of Zwitterionic Triazolato Complexes by Reaction of a Ruthenium Azido Complex with Excess Ethyl Propiolate Real-Time Characterization of Crystal Shape and Size Distribution Based on Moving Window and 3D Imaging in a Stirred Tank Application of Single Scan Differential Scanning Calorimetry Technique for Determination of Kinetic Parameters of Crystallisation in Se-Sb-Ag Improved Efficiency of ZnO and Ge Purification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1