基于rssi的室内定位与角度定位估计算法

Ambassa Joel Yves, Peng Hao
{"title":"基于rssi的室内定位与角度定位估计算法","authors":"Ambassa Joel Yves, Peng Hao","doi":"10.4172/2090-4886.1000122","DOIUrl":null,"url":null,"abstract":"For the scenarios of indoors localization and tracking, the solutions generally need complex infrastructure because they would require either a grid of antennas, each having a well-known position (proximity based approach), or a sophisticated algorithm that uses scene fingerprint to estimate the location or the zone of an object by matching the online measurement with the closest offline measurement. Those techniques may not be available in unknown zones, which will make it difficult to locate a lost node. In this paper, with no additional hardware costs, we propose a new RSSIbased approach in order to find a lost node using a known node. By rotating the known node at the same spot we can collect different RSSI for different polar angles. Two pairs of angles with the strongest RSSI will indicate the main lobes of the radiation pattern, namely, zone of the unknown node. Experimental results illustrate a very close estimation of the unknown node zone, reducing up to 84% of the zone uncertainty.","PeriodicalId":91517,"journal":{"name":"International journal of sensor networks and data communications","volume":"149 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4172/2090-4886.1000122","citationCount":"16","resultStr":"{\"title\":\"RSSI-based Indoor Localization Using RSSI-with-Angle-based Localization Estimation Algorithm\",\"authors\":\"Ambassa Joel Yves, Peng Hao\",\"doi\":\"10.4172/2090-4886.1000122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the scenarios of indoors localization and tracking, the solutions generally need complex infrastructure because they would require either a grid of antennas, each having a well-known position (proximity based approach), or a sophisticated algorithm that uses scene fingerprint to estimate the location or the zone of an object by matching the online measurement with the closest offline measurement. Those techniques may not be available in unknown zones, which will make it difficult to locate a lost node. In this paper, with no additional hardware costs, we propose a new RSSIbased approach in order to find a lost node using a known node. By rotating the known node at the same spot we can collect different RSSI for different polar angles. Two pairs of angles with the strongest RSSI will indicate the main lobes of the radiation pattern, namely, zone of the unknown node. Experimental results illustrate a very close estimation of the unknown node zone, reducing up to 84% of the zone uncertainty.\",\"PeriodicalId\":91517,\"journal\":{\"name\":\"International journal of sensor networks and data communications\",\"volume\":\"149 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4172/2090-4886.1000122\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of sensor networks and data communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2090-4886.1000122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of sensor networks and data communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2090-4886.1000122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

对于室内定位和跟踪的场景,解决方案通常需要复杂的基础设施,因为它们要么需要天线网格,每个天线都有一个已知的位置(基于接近度的方法),要么需要一个复杂的算法,使用场景指纹通过将在线测量与最近的离线测量相匹配来估计物体的位置或区域。这些技术在未知区域可能无法使用,这将使定位丢失节点变得困难。在本文中,在没有额外硬件成本的情况下,我们提出了一种新的基于rssid的方法,以便使用已知节点找到丢失的节点。通过旋转同一点的已知节点,我们可以收集不同极角度的不同RSSI。RSSI最强的两对角度表示辐射方向图的主叶,即未知节点的区域。实验结果表明,对未知节点区域的估计非常接近,减少了高达84%的区域不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RSSI-based Indoor Localization Using RSSI-with-Angle-based Localization Estimation Algorithm
For the scenarios of indoors localization and tracking, the solutions generally need complex infrastructure because they would require either a grid of antennas, each having a well-known position (proximity based approach), or a sophisticated algorithm that uses scene fingerprint to estimate the location or the zone of an object by matching the online measurement with the closest offline measurement. Those techniques may not be available in unknown zones, which will make it difficult to locate a lost node. In this paper, with no additional hardware costs, we propose a new RSSIbased approach in order to find a lost node using a known node. By rotating the known node at the same spot we can collect different RSSI for different polar angles. Two pairs of angles with the strongest RSSI will indicate the main lobes of the radiation pattern, namely, zone of the unknown node. Experimental results illustrate a very close estimation of the unknown node zone, reducing up to 84% of the zone uncertainty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Program Operators SIT, tS, S1 e, Set1 Towards Ultraviolet Microbeam Scanning and Lens-Less UV Microbeam Microscopy with Mirror Galvanometric Scanners: From the History of Research Instrumentation to Engineering of Modern Mechatronic Optical Systems Smart Surveillance: A Review & Survey Through Deep Learning Techniques for Detection & Analysis Deep Surveillance System Federated Learning for Collaborative Network Security in Decentralized Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1