处理器网络上可分负载调度的概率方法

Manar Arafat, S. Bataineh, Issa M. Khalil
{"title":"处理器网络上可分负载调度的概率方法","authors":"Manar Arafat, S. Bataineh, Issa M. Khalil","doi":"10.4172/2090-4886.1000130","DOIUrl":null,"url":null,"abstract":"Divisible Load Theory (DLT) is a very efficient tool to schedule arbitrarily divisible load on a set of network processors. Most of previous work using DLT assumes that the processors' speeds and links' speeds are time- invariant. Closed form solution was derived for the system under the assumption that the processors' speed s and the links' speeds stay the same during the task execution time. This assumption is not practical as most of distributed systems used today have an autonomous control. In this paper we consider a distributed system (Grid) where the availability of the processors varies and follows a certain distribution function. A closed form solution for the finish time is derived. The solution considers all system parameters such as links' speed, number of processors, number of resources (sites), and availability of the processors and how much of power they can contribute. The result is shown and it measures the variation of execution time against the availability of processors.","PeriodicalId":91517,"journal":{"name":"International journal of sensor networks and data communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Probabilistic Approach to Scheduling Divisible Load on Network ofProcessors\",\"authors\":\"Manar Arafat, S. Bataineh, Issa M. Khalil\",\"doi\":\"10.4172/2090-4886.1000130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Divisible Load Theory (DLT) is a very efficient tool to schedule arbitrarily divisible load on a set of network processors. Most of previous work using DLT assumes that the processors' speeds and links' speeds are time- invariant. Closed form solution was derived for the system under the assumption that the processors' speed s and the links' speeds stay the same during the task execution time. This assumption is not practical as most of distributed systems used today have an autonomous control. In this paper we consider a distributed system (Grid) where the availability of the processors varies and follows a certain distribution function. A closed form solution for the finish time is derived. The solution considers all system parameters such as links' speed, number of processors, number of resources (sites), and availability of the processors and how much of power they can contribute. The result is shown and it measures the variation of execution time against the availability of processors.\",\"PeriodicalId\":91517,\"journal\":{\"name\":\"International journal of sensor networks and data communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of sensor networks and data communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2090-4886.1000130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of sensor networks and data communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2090-4886.1000130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

可分负载理论(DLT)是一种非常有效的工具,可以在一组网络处理器上调度任意可分负载。以前使用DLT的大多数工作都假设处理器的速度和链路的速度是时不变的。在任务执行过程中,假设处理器的速度和链路的速度保持不变,导出了系统的闭形式解。这种假设是不切实际的,因为目前使用的大多数分布式系统都有自主控制。在本文中,我们考虑一个分布式系统(网格),其中处理器的可用性是变化的,并遵循一定的分布函数。导出了完成时间的封闭形式解。该解决方案考虑了所有系统参数,例如链接的速度、处理器的数量、资源(站点)的数量、处理器的可用性以及它们可以贡献多少功率。显示结果,并根据处理器的可用性度量执行时间的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Probabilistic Approach to Scheduling Divisible Load on Network ofProcessors
Divisible Load Theory (DLT) is a very efficient tool to schedule arbitrarily divisible load on a set of network processors. Most of previous work using DLT assumes that the processors' speeds and links' speeds are time- invariant. Closed form solution was derived for the system under the assumption that the processors' speed s and the links' speeds stay the same during the task execution time. This assumption is not practical as most of distributed systems used today have an autonomous control. In this paper we consider a distributed system (Grid) where the availability of the processors varies and follows a certain distribution function. A closed form solution for the finish time is derived. The solution considers all system parameters such as links' speed, number of processors, number of resources (sites), and availability of the processors and how much of power they can contribute. The result is shown and it measures the variation of execution time against the availability of processors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Program Operators SIT, tS, S1 e, Set1 Towards Ultraviolet Microbeam Scanning and Lens-Less UV Microbeam Microscopy with Mirror Galvanometric Scanners: From the History of Research Instrumentation to Engineering of Modern Mechatronic Optical Systems Smart Surveillance: A Review & Survey Through Deep Learning Techniques for Detection & Analysis Deep Surveillance System Federated Learning for Collaborative Network Security in Decentralized Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1