{"title":"Bondi-Sachs形式主义","authors":"Thomas Mädler, J. Winicour","doi":"10.4249/scholarpedia.33528","DOIUrl":null,"url":null,"abstract":"The Bondi-Sachs formalism of General Relativity is a metric-based treatment of the Einstein equations in which the coordinates are adapted to the null geodesics of the spacetime. It provided the first convincing evidence that gravitational radiation is a nonlinear effect of general relativity and that the emission of gravitational waves from an isolated system is accompanied by a mass loss from the system. The asymptotic behaviour of the Bondi-Sachs metric revealed the existence of the symmetry group at null infinity, the Bondi-Metzner-Sachs group, which turned out to be larger than the Poincare group.","PeriodicalId":74760,"journal":{"name":"Scholarpedia journal","volume":"17 1","pages":"33528"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"123","resultStr":"{\"title\":\"Bondi-Sachs Formalism\",\"authors\":\"Thomas Mädler, J. Winicour\",\"doi\":\"10.4249/scholarpedia.33528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Bondi-Sachs formalism of General Relativity is a metric-based treatment of the Einstein equations in which the coordinates are adapted to the null geodesics of the spacetime. It provided the first convincing evidence that gravitational radiation is a nonlinear effect of general relativity and that the emission of gravitational waves from an isolated system is accompanied by a mass loss from the system. The asymptotic behaviour of the Bondi-Sachs metric revealed the existence of the symmetry group at null infinity, the Bondi-Metzner-Sachs group, which turned out to be larger than the Poincare group.\",\"PeriodicalId\":74760,\"journal\":{\"name\":\"Scholarpedia journal\",\"volume\":\"17 1\",\"pages\":\"33528\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"123\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scholarpedia journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4249/scholarpedia.33528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scholarpedia journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4249/scholarpedia.33528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Bondi-Sachs formalism of General Relativity is a metric-based treatment of the Einstein equations in which the coordinates are adapted to the null geodesics of the spacetime. It provided the first convincing evidence that gravitational radiation is a nonlinear effect of general relativity and that the emission of gravitational waves from an isolated system is accompanied by a mass loss from the system. The asymptotic behaviour of the Bondi-Sachs metric revealed the existence of the symmetry group at null infinity, the Bondi-Metzner-Sachs group, which turned out to be larger than the Poincare group.