三位一体刚毛蜗牛种复合体亚枝的系统发育关系、河流屏障与再分类

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2021-07-06 DOI:10.51492/CFWJ.CESASI.6
R. M. Sullivan
{"title":"三位一体刚毛蜗牛种复合体亚枝的系统发育关系、河流屏障与再分类","authors":"R. M. Sullivan","doi":"10.51492/CFWJ.CESASI.6","DOIUrl":null,"url":null,"abstract":"The Trinity bristle snail (Monadenia setosa) is listed as a threatened species under the California Endangered Species Act (CESA). In northern California, populations of this endemic terrestrial gastropod occur in rare, isolated, and highly fragmented locations within the greater Trinity Basin. Since 1952 when it was originally described, the taxonomic status of the Trinity bristle snail has been questioned based on unpublished information limited in geographic scope and sample size, which resulted in the taxon being reduced from species status (M. setosa) to subspecific status (M. i. setosa) within the Redwood sideband (M. infumata) species complex. Primary objectives of the present study were to: 1) use DNA extraction and PCR sequencing to gain insight into patterns of genetic variation and phylogenetic relationships among a larger sample of endemic populations of the Trinity bristle snail; 2) re-evaluate the systematic and taxonomic status of the species using outgroup analysis and references samples from sympatric ecologically co-occurring taxa within the genus Monadenia; and 3) evaluate the potential biogeographic effects of major riverine systems on genetic differentiation among relic and disjunct populations within the Trinity Basin. Results of the DNA sequence analysis using several different tree reconstruction methods revealed that subspecies of the Redwood sideband (M. i. subcarinata), Yellow-based sideband (M. i. ochromphalus), and the Trinity bristle (M. i. setosa) exhibited a phylogenetic signal at > 95% species probability. Except for the Yellow-based sideband, molecular evidence detected the presence of several morphologically cryptic subclades within each species clade formerly undescribed by the scientific community. Syntopic1 ecological relationships between subclades of the Trinity bristle snail and the Redwood sideband occurred in several areas within the geographic range of the Trinity bristle snail, which indicated that these subclades were conservatively differentiated at the subspecific level. A Bayesian coalescent tree showed that genetic variation 1 Syntopy refers to the joint occurrence of two species in the same habitat at the same time, which may result in hybridization between closely related taxa or sister species. In contrast, sympatric species occur together in the same region, but do not necessarily share the same localities as syntopic species do (Futuma 2009). among allopatric subclades of the Trinity bristle snail and the Redwood sideband were congruent with hydrological discontinuities associated with site-specific riparian stream corridors and the primary river systems within the Trinity Basin. Correlation analysis revealed a pattern of area effects, wherein sparsely bristled Trinity bristle snails were generally found to the northwest and more abundantly bristled individuals to the southeast in relation to primary river corridors that bisect the central Trinity Basin. A similar but opposite trend was observed in the directional pattern of banding. Here the most conspicuously banded individuals were found in samples distributed to the northwest while individuals with less conspicuous banding patterns occurred in a more southeasterly direction in relation to primary riverine corridors. These geographic patterns of bristles and bands appeared to reflect shallow clines that were evident in samples of both the Trinity bristle snail and the Redwood sideband. Parsimony character state reconstructions revealed that the presence of bristles and conspicuousness of bands was widespread among genetic samples, but these attributes did not provide a definitive morphological character that could be used to distinguish among co-occurring taxa.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Phylogenetic relationships among subclades within the Trinity bristle snail species complex, riverine barriers, and re-classification\",\"authors\":\"R. M. Sullivan\",\"doi\":\"10.51492/CFWJ.CESASI.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Trinity bristle snail (Monadenia setosa) is listed as a threatened species under the California Endangered Species Act (CESA). In northern California, populations of this endemic terrestrial gastropod occur in rare, isolated, and highly fragmented locations within the greater Trinity Basin. Since 1952 when it was originally described, the taxonomic status of the Trinity bristle snail has been questioned based on unpublished information limited in geographic scope and sample size, which resulted in the taxon being reduced from species status (M. setosa) to subspecific status (M. i. setosa) within the Redwood sideband (M. infumata) species complex. Primary objectives of the present study were to: 1) use DNA extraction and PCR sequencing to gain insight into patterns of genetic variation and phylogenetic relationships among a larger sample of endemic populations of the Trinity bristle snail; 2) re-evaluate the systematic and taxonomic status of the species using outgroup analysis and references samples from sympatric ecologically co-occurring taxa within the genus Monadenia; and 3) evaluate the potential biogeographic effects of major riverine systems on genetic differentiation among relic and disjunct populations within the Trinity Basin. Results of the DNA sequence analysis using several different tree reconstruction methods revealed that subspecies of the Redwood sideband (M. i. subcarinata), Yellow-based sideband (M. i. ochromphalus), and the Trinity bristle (M. i. setosa) exhibited a phylogenetic signal at > 95% species probability. Except for the Yellow-based sideband, molecular evidence detected the presence of several morphologically cryptic subclades within each species clade formerly undescribed by the scientific community. Syntopic1 ecological relationships between subclades of the Trinity bristle snail and the Redwood sideband occurred in several areas within the geographic range of the Trinity bristle snail, which indicated that these subclades were conservatively differentiated at the subspecific level. A Bayesian coalescent tree showed that genetic variation 1 Syntopy refers to the joint occurrence of two species in the same habitat at the same time, which may result in hybridization between closely related taxa or sister species. In contrast, sympatric species occur together in the same region, but do not necessarily share the same localities as syntopic species do (Futuma 2009). among allopatric subclades of the Trinity bristle snail and the Redwood sideband were congruent with hydrological discontinuities associated with site-specific riparian stream corridors and the primary river systems within the Trinity Basin. Correlation analysis revealed a pattern of area effects, wherein sparsely bristled Trinity bristle snails were generally found to the northwest and more abundantly bristled individuals to the southeast in relation to primary river corridors that bisect the central Trinity Basin. A similar but opposite trend was observed in the directional pattern of banding. Here the most conspicuously banded individuals were found in samples distributed to the northwest while individuals with less conspicuous banding patterns occurred in a more southeasterly direction in relation to primary riverine corridors. These geographic patterns of bristles and bands appeared to reflect shallow clines that were evident in samples of both the Trinity bristle snail and the Redwood sideband. Parsimony character state reconstructions revealed that the presence of bristles and conspicuousness of bands was widespread among genetic samples, but these attributes did not provide a definitive morphological character that could be used to distinguish among co-occurring taxa.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51492/CFWJ.CESASI.6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51492/CFWJ.CESASI.6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

根据加州濒危物种法案(CESA),三位一体刚毛蜗牛(Monadenia setosa)被列为受威胁物种。在加利福尼亚北部,这种地方性陆生腹足动物的种群出现在大三一盆地内罕见的、孤立的、高度分散的地方。自1952年首次被描述以来,由于地理范围和样本数量的限制,三位角刚毛蜗牛的分类地位受到质疑,导致该分类群在红木边带(M. infumata)种复群中从种地位(M. setosa)下降到亚种地位(M. setosa)。本研究的主要目的是:1)利用DNA提取和PCR测序技术,深入了解三位一体刚毛螺特有种群的遗传变异模式和系统发育关系;2)利用外群分析和同域生态共生类群的参考样本,重新评价该物种的系统和分类学地位;3)评价主要河流系统对三位一体盆地内遗存种群和分离种群遗传分化的潜在生物地理效应。采用不同的树重建方法进行DNA序列分析,结果表明红木边带(m.i. subcarinata)、黄基边带(m.i. ochromphalus)和三叉戟(m.i. setosa)的亚种在bb0 95%的种概率下表现出系统发育信号。除了基于黄色的边带,分子证据检测到在每个物种分支中存在几个形态上隐蔽的亚分支,这些分支以前被科学界描述过。三位一体钉螺亚枝与红木边带的生态关系在三位一体钉螺地理分布范围内的多个区域均存在,表明这些亚枝在亚种水平上存在着保守分化。贝叶斯聚结树分析表明,遗传变异1 Syntopy是指两个物种同时在同一生境中共同发生,可能导致亲缘关系密切的分类群或姐妹种之间的杂交。相比之下,同域物种一起出现在同一地区,但不一定像同域物种那样共享相同的位置(Futuma 2009)。三位一体刚毛螺和红木边带的异域亚支与三位一体盆地内特定地点的河岸河流走廊和主要河流系统的水文不连续一致。相关分析表明,三位一体盆地中部主要河流廊道的西北方向钉螺刚毛较少,东南方向钉螺刚毛较多。在带状的方向模式中观察到类似但相反的趋势。带状分布最明显的个体分布在西北方向,而不明显的个体分布在主要河流廊道的东南方向。这些刚毛和带状的地理模式似乎反映了在三位一体刚毛蜗牛和红木边带样本中明显的浅线。简约特征状态重建显示,刚毛和条带的显著性在遗传样本中广泛存在,但这些特征并不能提供一个确定的形态学特征,可以用来区分共发生的分类群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phylogenetic relationships among subclades within the Trinity bristle snail species complex, riverine barriers, and re-classification
The Trinity bristle snail (Monadenia setosa) is listed as a threatened species under the California Endangered Species Act (CESA). In northern California, populations of this endemic terrestrial gastropod occur in rare, isolated, and highly fragmented locations within the greater Trinity Basin. Since 1952 when it was originally described, the taxonomic status of the Trinity bristle snail has been questioned based on unpublished information limited in geographic scope and sample size, which resulted in the taxon being reduced from species status (M. setosa) to subspecific status (M. i. setosa) within the Redwood sideband (M. infumata) species complex. Primary objectives of the present study were to: 1) use DNA extraction and PCR sequencing to gain insight into patterns of genetic variation and phylogenetic relationships among a larger sample of endemic populations of the Trinity bristle snail; 2) re-evaluate the systematic and taxonomic status of the species using outgroup analysis and references samples from sympatric ecologically co-occurring taxa within the genus Monadenia; and 3) evaluate the potential biogeographic effects of major riverine systems on genetic differentiation among relic and disjunct populations within the Trinity Basin. Results of the DNA sequence analysis using several different tree reconstruction methods revealed that subspecies of the Redwood sideband (M. i. subcarinata), Yellow-based sideband (M. i. ochromphalus), and the Trinity bristle (M. i. setosa) exhibited a phylogenetic signal at > 95% species probability. Except for the Yellow-based sideband, molecular evidence detected the presence of several morphologically cryptic subclades within each species clade formerly undescribed by the scientific community. Syntopic1 ecological relationships between subclades of the Trinity bristle snail and the Redwood sideband occurred in several areas within the geographic range of the Trinity bristle snail, which indicated that these subclades were conservatively differentiated at the subspecific level. A Bayesian coalescent tree showed that genetic variation 1 Syntopy refers to the joint occurrence of two species in the same habitat at the same time, which may result in hybridization between closely related taxa or sister species. In contrast, sympatric species occur together in the same region, but do not necessarily share the same localities as syntopic species do (Futuma 2009). among allopatric subclades of the Trinity bristle snail and the Redwood sideband were congruent with hydrological discontinuities associated with site-specific riparian stream corridors and the primary river systems within the Trinity Basin. Correlation analysis revealed a pattern of area effects, wherein sparsely bristled Trinity bristle snails were generally found to the northwest and more abundantly bristled individuals to the southeast in relation to primary river corridors that bisect the central Trinity Basin. A similar but opposite trend was observed in the directional pattern of banding. Here the most conspicuously banded individuals were found in samples distributed to the northwest while individuals with less conspicuous banding patterns occurred in a more southeasterly direction in relation to primary riverine corridors. These geographic patterns of bristles and bands appeared to reflect shallow clines that were evident in samples of both the Trinity bristle snail and the Redwood sideband. Parsimony character state reconstructions revealed that the presence of bristles and conspicuousness of bands was widespread among genetic samples, but these attributes did not provide a definitive morphological character that could be used to distinguish among co-occurring taxa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Intentions to move abroad among medical students: a cross-sectional study to investigate determinants and opinions. Analysis of Medical Rehabilitation Needs of 2023 Kahramanmaraş Earthquake Victims: Adıyaman Example. Efficacy of whole body vibration on fascicle length and joint angle in children with hemiplegic cerebral palsy. The change process questionnaire (CPQ): A psychometric validation. Prevalence and predictors of hand hygiene compliance in clinical, surgical and intensive care unit wards: results of a second cross-sectional study at the Umberto I teaching hospital of Rome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1