移动机器人在非静止和非结构化环境中的导航

V. Vlădăreanu, G. Tont, L. Vlădăreanu
{"title":"移动机器人在非静止和非结构化环境中的导航","authors":"V. Vlădăreanu, G. Tont, L. Vlădăreanu","doi":"10.5281/ZENODO.30336","DOIUrl":null,"url":null,"abstract":"The paper presents the navigation of mobile walking robot systems for movement in non-stationary and non-structured environments. In the first approach are presented main elements for the successful completion of intelligent navigation. The wireless sensor networks (WSN), dynamical stability control, strategies for dynamical control and a Bayesian approach of simultaneous localisation and mapping (SLAM) for avoiding obstacles and dynamical stability control for motion on rough terrain are studied. By processing inertial information of force, torque, tilting and wireless sensor networks (WSN) an intelligent high level algorithm is implementing using the virtual projection method. New capabilities to improve the walking robot stability are developed through the real-time balance motion control. The dynamic robot walking is presented in correlation with a stochastic model of assessing system probability of unidirectional or bidirectional transition states, applying the non-homogeneous/non-stationary Markov chains. The results show that the proposed new navigation strategy of the mobile robot using Bayesian approach walking robot control systems for going around obstacles has increased the robot's mobility and stability in workspace.","PeriodicalId":38583,"journal":{"name":"International Journal of Advanced Mechatronic Systems","volume":"5 1","pages":"232"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"The navigation of mobile robots in non-stationary and non-structured environments\",\"authors\":\"V. Vlădăreanu, G. Tont, L. Vlădăreanu\",\"doi\":\"10.5281/ZENODO.30336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents the navigation of mobile walking robot systems for movement in non-stationary and non-structured environments. In the first approach are presented main elements for the successful completion of intelligent navigation. The wireless sensor networks (WSN), dynamical stability control, strategies for dynamical control and a Bayesian approach of simultaneous localisation and mapping (SLAM) for avoiding obstacles and dynamical stability control for motion on rough terrain are studied. By processing inertial information of force, torque, tilting and wireless sensor networks (WSN) an intelligent high level algorithm is implementing using the virtual projection method. New capabilities to improve the walking robot stability are developed through the real-time balance motion control. The dynamic robot walking is presented in correlation with a stochastic model of assessing system probability of unidirectional or bidirectional transition states, applying the non-homogeneous/non-stationary Markov chains. The results show that the proposed new navigation strategy of the mobile robot using Bayesian approach walking robot control systems for going around obstacles has increased the robot's mobility and stability in workspace.\",\"PeriodicalId\":38583,\"journal\":{\"name\":\"International Journal of Advanced Mechatronic Systems\",\"volume\":\"5 1\",\"pages\":\"232\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Mechatronic Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.30336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Mechatronic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.30336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 19

摘要

研究了移动步行机器人系统在非静止和非结构化环境中的导航问题。在第一种方法中,提出了成功完成智能导航的主要要素。研究了无线传感器网络(WSN)、动态稳定控制、动态控制策略和贝叶斯同时定位与映射方法(SLAM),用于避障和在崎岖地形上运动的动态稳定控制。通过处理力、力矩、倾斜和无线传感器网络的惯性信息,采用虚拟投影法实现了一种智能高级算法。通过实时平衡运动控制,开发了提高步行机器人稳定性的新功能。利用非齐次/非平稳马尔可夫链,将机器人动态行走与评估系统单向或双向过渡状态概率的随机模型联系起来。结果表明,基于贝叶斯方法的移动机器人绕障导航策略提高了机器人在工作空间的移动性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The navigation of mobile robots in non-stationary and non-structured environments
The paper presents the navigation of mobile walking robot systems for movement in non-stationary and non-structured environments. In the first approach are presented main elements for the successful completion of intelligent navigation. The wireless sensor networks (WSN), dynamical stability control, strategies for dynamical control and a Bayesian approach of simultaneous localisation and mapping (SLAM) for avoiding obstacles and dynamical stability control for motion on rough terrain are studied. By processing inertial information of force, torque, tilting and wireless sensor networks (WSN) an intelligent high level algorithm is implementing using the virtual projection method. New capabilities to improve the walking robot stability are developed through the real-time balance motion control. The dynamic robot walking is presented in correlation with a stochastic model of assessing system probability of unidirectional or bidirectional transition states, applying the non-homogeneous/non-stationary Markov chains. The results show that the proposed new navigation strategy of the mobile robot using Bayesian approach walking robot control systems for going around obstacles has increased the robot's mobility and stability in workspace.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Advanced Mechatronic Systems
International Journal of Advanced Mechatronic Systems Engineering-Mechanical Engineering
CiteScore
1.20
自引率
0.00%
发文量
5
期刊最新文献
An Analysis of Prescribed Fire Activities and Emissions in the Southeastern United States from 2013 to 2020. Multiple factors collaborative optimisation of intelligent storage system Comparing the gearing torque capacity of pericycloidal and planetary gear reducers Decay-rate-constrained design of vibration damping network by a non-convex approach Torque ripple reduction rate of 6/4 switched reluctance motor by turn-on and turn-off controllers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1