使数据管理计划可操作:模板和工具

Q2 Computer Science Data Science Journal Pub Date : 2023-01-01 DOI:10.5334/dsj-2023-029
J. Philipson, A. Hasan, H. Moa
{"title":"使数据管理计划可操作:模板和工具","authors":"J. Philipson, A. Hasan, H. Moa","doi":"10.5334/dsj-2023-029","DOIUrl":null,"url":null,"abstract":"Since September of 2019, a task group within the European Open Science Cloud - EOSC Nordic Project, work-package 5 (T5.3.2), has focused its attention on machine-actionable Data Management Plans (maDMPs). A delivery working-paper from the group ( Hasan et al. 2021) concluded in summary that extracting useful information from traditional free-text based DMPs is problematic. While maDMPs are generally more FAIR compliant, and as such accessible to both humans and machines, more interoperable with other systems, and serving different stakeholders for processing, sharing, evaluation and reuse . Different DMP tools and templates have developed independently, to a varying degree, allowing for the creation of genuinely machine actionable DMPs. Here we will describe the first three tools or projects for creating maDMPs that were central parts of the original task group mission. We will get into a more detailed account of one of these, specifically the Stockholm University – EOSC Nordic maDMP project using the DMP Online tool, as described by Philipson (2021). We will also briefly touch upon some other current tools and projects for creating maDMPs that are compliant with the RDA DMP Common Standard (RDCS), aiming for integration with other research information systems or research data repositories. A possible conclusion from this overview is that the development of tools for maDMPs is progressing fast and seems to converge towards a common standard. Nonetheless, there remains","PeriodicalId":35375,"journal":{"name":"Data Science Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Making Data Management Plans Machine Actionable: Templates and Tools\",\"authors\":\"J. Philipson, A. Hasan, H. Moa\",\"doi\":\"10.5334/dsj-2023-029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since September of 2019, a task group within the European Open Science Cloud - EOSC Nordic Project, work-package 5 (T5.3.2), has focused its attention on machine-actionable Data Management Plans (maDMPs). A delivery working-paper from the group ( Hasan et al. 2021) concluded in summary that extracting useful information from traditional free-text based DMPs is problematic. While maDMPs are generally more FAIR compliant, and as such accessible to both humans and machines, more interoperable with other systems, and serving different stakeholders for processing, sharing, evaluation and reuse . Different DMP tools and templates have developed independently, to a varying degree, allowing for the creation of genuinely machine actionable DMPs. Here we will describe the first three tools or projects for creating maDMPs that were central parts of the original task group mission. We will get into a more detailed account of one of these, specifically the Stockholm University – EOSC Nordic maDMP project using the DMP Online tool, as described by Philipson (2021). We will also briefly touch upon some other current tools and projects for creating maDMPs that are compliant with the RDA DMP Common Standard (RDCS), aiming for integration with other research information systems or research data repositories. A possible conclusion from this overview is that the development of tools for maDMPs is progressing fast and seems to converge towards a common standard. Nonetheless, there remains\",\"PeriodicalId\":35375,\"journal\":{\"name\":\"Data Science Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5334/dsj-2023-029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/dsj-2023-029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

自2019年9月以来,欧洲开放科学云EOSC北欧项目工作包5 (T5.3.2)内的一个任务组将注意力集中在可机器操作的数据管理计划(madmp)上。该小组的一份交付工作文件(Hasan et al. 2021)总结说,从传统的基于自由文本的dmp中提取有用的信息是有问题的。虽然madmp通常更符合FAIR标准,因此对人和机器都可访问,但与其他系统更具互操作性,并为不同的利益相关者提供处理、共享、评估和重用服务。不同的DMP工具和模板在不同程度上独立开发,允许创建真正的机器可操作的DMP。在这里,我们将描述用于创建madmp的前三个工具或项目,它们是原始任务组任务的核心部分。我们将更详细地介绍其中一个,特别是斯德哥尔摩大学- EOSC北欧maDMP项目,使用DMP在线工具,如Philipson(2021)所述。我们还将简要介绍一些其他当前用于创建符合RDA DMP通用标准(RDCS)的madmp的工具和项目,旨在与其他研究信息系统或研究数据存储库集成。从这个概述中可能得出的结论是,madmp工具的开发进展迅速,似乎正在向一个通用标准靠拢。尽管如此,要实现这一目标还有大量的工作要做。*作者关系可在本文后面找到2 Philipson等人。自20世纪60年代末以来,数据管理计划(dmp)一直被用作具有复杂数据管理需求的学科的研究和开发项目管理工具。在这个早期阶段,dmp的发展主要是由对数据管理有特定要求的研究人员推动的(Hasan et al. 2021)。后来,从本世纪初开始,随着开放科学运动的出现,其他利益相关者也加入了dmp。例如,资助组织发布他们自己的DMP模板,表达他们对资助项目的数据管理的要求,以使结果是可验证的透明。出现的其他利益相关者是参与研究管理的学术机构(大学),以及由政府机构代表的整个社会,他们要求公共资助的研究尽可能公开。这一运动的一部分也是公平原则的问题(Wilkinson et al. 2016)。这反过来又要求dmp成为机器可操作的(madmp),作为遵守FAIR可访问性和互操作性原则的要求,从而促进与整个研究数据管理基础设施的集成,正如Miksa等人(2019)所建议的那样。为了响应对madmp的呼吁,研究数据联盟(RDA)从2018年开始制定了机器可操作数据管理计划(RDCS)的RDA DMP通用标准,其最新版本(在撰写本文时)是2020年11月11日的1.1版本。遵守RDCS一直是开发用于创建madmp的在线工具的重要指导原则之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Making Data Management Plans Machine Actionable: Templates and Tools
Since September of 2019, a task group within the European Open Science Cloud - EOSC Nordic Project, work-package 5 (T5.3.2), has focused its attention on machine-actionable Data Management Plans (maDMPs). A delivery working-paper from the group ( Hasan et al. 2021) concluded in summary that extracting useful information from traditional free-text based DMPs is problematic. While maDMPs are generally more FAIR compliant, and as such accessible to both humans and machines, more interoperable with other systems, and serving different stakeholders for processing, sharing, evaluation and reuse . Different DMP tools and templates have developed independently, to a varying degree, allowing for the creation of genuinely machine actionable DMPs. Here we will describe the first three tools or projects for creating maDMPs that were central parts of the original task group mission. We will get into a more detailed account of one of these, specifically the Stockholm University – EOSC Nordic maDMP project using the DMP Online tool, as described by Philipson (2021). We will also briefly touch upon some other current tools and projects for creating maDMPs that are compliant with the RDA DMP Common Standard (RDCS), aiming for integration with other research information systems or research data repositories. A possible conclusion from this overview is that the development of tools for maDMPs is progressing fast and seems to converge towards a common standard. Nonetheless, there remains
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data Science Journal
Data Science Journal Computer Science-Computer Science (miscellaneous)
CiteScore
5.40
自引率
0.00%
发文量
17
审稿时长
10 weeks
期刊介绍: The Data Science Journal is a peer-reviewed electronic journal publishing papers on the management of data and databases in Science and Technology. Details can be found in the prospectus. The scope of the journal includes descriptions of data systems, their publication on the internet, applications and legal issues. All of the Sciences are covered, including the Physical Sciences, Engineering, the Geosciences and the Biosciences, along with Agriculture and the Medical Science. The journal publishes papers about data and data systems; it does not publish data or data compilations. However it may publish papers about methods of data compilation or analysis.
期刊最新文献
Data on the Margins – Data from LGBTIQ+ Populations in European Social Science Data Archives Insights on Sustainability of Earth Science Data Infrastructure Projects Using OpenBIS as Virtual Research Environment: An ELN-LIMS Open-Source Database Tool as a Framework within the CRC 1411 Design of Particulate Products Umbrella Data Management Plans to Integrate FAIR Data: Lessons From the ISIDORe and BY-COVID Consortia for Pandemic Preparedness The Launch of the <em>Data Science Journal</em>&nbsp;in 2002
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1