{"title":"神经柱的功能作用:解决停车地点分类中的F2转换变异性","authors":"H. Sussman","doi":"10.5964/bioling.9049","DOIUrl":null,"url":null,"abstract":"Documented examples from neuroethology have revealed species-specific neural encoding mechanisms capable of mapping highly variable, but lawful, visual and auditory inputs within neural columns. By virtue of the entire column being the functional unit of both representation and processing, signal variation is collectively ‘absorbed’, and hence normalized, to help form natural categories possessing an underlying physically-based commonality. Stimulus-specific ‘tolerance ranges’ define the limits of signal variation, effectively shaping the functionality of the columnar-based processing. A conceptualization for an analogous human model utilizing this evolutionarily conserved neural encoding strategy for signal variability absorption is described for the non-invariance issue in stop place perception.","PeriodicalId":54041,"journal":{"name":"Biolinguistics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2016-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Functional Role for Neural Columns: Resolving F2 Transition Variability in Stop Place Categorization\",\"authors\":\"H. Sussman\",\"doi\":\"10.5964/bioling.9049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Documented examples from neuroethology have revealed species-specific neural encoding mechanisms capable of mapping highly variable, but lawful, visual and auditory inputs within neural columns. By virtue of the entire column being the functional unit of both representation and processing, signal variation is collectively ‘absorbed’, and hence normalized, to help form natural categories possessing an underlying physically-based commonality. Stimulus-specific ‘tolerance ranges’ define the limits of signal variation, effectively shaping the functionality of the columnar-based processing. A conceptualization for an analogous human model utilizing this evolutionarily conserved neural encoding strategy for signal variability absorption is described for the non-invariance issue in stop place perception.\",\"PeriodicalId\":54041,\"journal\":{\"name\":\"Biolinguistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2016-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biolinguistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5964/bioling.9049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"LANGUAGE & LINGUISTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biolinguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5964/bioling.9049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"LANGUAGE & LINGUISTICS","Score":null,"Total":0}
A Functional Role for Neural Columns: Resolving F2 Transition Variability in Stop Place Categorization
Documented examples from neuroethology have revealed species-specific neural encoding mechanisms capable of mapping highly variable, but lawful, visual and auditory inputs within neural columns. By virtue of the entire column being the functional unit of both representation and processing, signal variation is collectively ‘absorbed’, and hence normalized, to help form natural categories possessing an underlying physically-based commonality. Stimulus-specific ‘tolerance ranges’ define the limits of signal variation, effectively shaping the functionality of the columnar-based processing. A conceptualization for an analogous human model utilizing this evolutionarily conserved neural encoding strategy for signal variability absorption is described for the non-invariance issue in stop place perception.