{"title":"碳纳米管增强玻璃纤维/环氧树脂和碳纤维/环氧复合材料管状结构的准静态破碎和吸能行为研究","authors":"Yasin Yilmaz, H. Callioglu, Ali Balbay","doi":"10.5505/pajes.2021.68047","DOIUrl":null,"url":null,"abstract":"Bu çalışmada, karbon nano tüp (CNT) katkılı cam fiber/epoksi (GFRP) ve karbon fiber/epoksi (CFRP) kompozit borusal yapıların ezilme ve crushing and energy absorption behavior of carbon nanotube (CNT) reinforced glass fiber/epoxy (GFRP) and carbon fiber/epoxy (CFRP) composite tubular structures has been investigated. The study consists of two main parts. First part deals with the experimental studies. At this stage, functionalized multi-walled CNT added (at weight percentages of 0.1; 0.2; 0.3; 0.5; 1; 2%) and additive free GFRP composite plates were produced using hand lay-up method and tension, compression and shear tests were carried out to determine mechanical properties of the composite materials. As a result of these investigations, 0.5% CNT addition is determined to be most suitable rate for the composite in terms of tension, compression, and shear strength. The second part deals with the numerical studies. At this stage, quasi-static crushing and energy absorption characteristics of circular and square cross-section GFRP and CFRP tubes were investigated numerically using the determined mechanical properties in a commercial finite element based software (ABAQUS). The mechanical properties of CFRP tubes were taken from the existing literature. As a result of numerical studies, the specific energy absorption capacity of circular CFRP tubes was found to be most efficient compared to the other tubes.","PeriodicalId":44807,"journal":{"name":"Pamukkale University Journal of Engineering Sciences-Pamukkale Universitesi Muhendislik Bilimleri Dergisi","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation of quasi-static crushing and energy absorption behaviors of carbon nanotube reinforced glass fiber/epoxy and carbon fiber/epoxy composite tubular structures\",\"authors\":\"Yasin Yilmaz, H. Callioglu, Ali Balbay\",\"doi\":\"10.5505/pajes.2021.68047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bu çalışmada, karbon nano tüp (CNT) katkılı cam fiber/epoksi (GFRP) ve karbon fiber/epoksi (CFRP) kompozit borusal yapıların ezilme ve crushing and energy absorption behavior of carbon nanotube (CNT) reinforced glass fiber/epoxy (GFRP) and carbon fiber/epoxy (CFRP) composite tubular structures has been investigated. The study consists of two main parts. First part deals with the experimental studies. At this stage, functionalized multi-walled CNT added (at weight percentages of 0.1; 0.2; 0.3; 0.5; 1; 2%) and additive free GFRP composite plates were produced using hand lay-up method and tension, compression and shear tests were carried out to determine mechanical properties of the composite materials. As a result of these investigations, 0.5% CNT addition is determined to be most suitable rate for the composite in terms of tension, compression, and shear strength. The second part deals with the numerical studies. At this stage, quasi-static crushing and energy absorption characteristics of circular and square cross-section GFRP and CFRP tubes were investigated numerically using the determined mechanical properties in a commercial finite element based software (ABAQUS). The mechanical properties of CFRP tubes were taken from the existing literature. As a result of numerical studies, the specific energy absorption capacity of circular CFRP tubes was found to be most efficient compared to the other tubes.\",\"PeriodicalId\":44807,\"journal\":{\"name\":\"Pamukkale University Journal of Engineering Sciences-Pamukkale Universitesi Muhendislik Bilimleri Dergisi\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pamukkale University Journal of Engineering Sciences-Pamukkale Universitesi Muhendislik Bilimleri Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5505/pajes.2021.68047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pamukkale University Journal of Engineering Sciences-Pamukkale Universitesi Muhendislik Bilimleri Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5505/pajes.2021.68047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigation of quasi-static crushing and energy absorption behaviors of carbon nanotube reinforced glass fiber/epoxy and carbon fiber/epoxy composite tubular structures
Bu çalışmada, karbon nano tüp (CNT) katkılı cam fiber/epoksi (GFRP) ve karbon fiber/epoksi (CFRP) kompozit borusal yapıların ezilme ve crushing and energy absorption behavior of carbon nanotube (CNT) reinforced glass fiber/epoxy (GFRP) and carbon fiber/epoxy (CFRP) composite tubular structures has been investigated. The study consists of two main parts. First part deals with the experimental studies. At this stage, functionalized multi-walled CNT added (at weight percentages of 0.1; 0.2; 0.3; 0.5; 1; 2%) and additive free GFRP composite plates were produced using hand lay-up method and tension, compression and shear tests were carried out to determine mechanical properties of the composite materials. As a result of these investigations, 0.5% CNT addition is determined to be most suitable rate for the composite in terms of tension, compression, and shear strength. The second part deals with the numerical studies. At this stage, quasi-static crushing and energy absorption characteristics of circular and square cross-section GFRP and CFRP tubes were investigated numerically using the determined mechanical properties in a commercial finite element based software (ABAQUS). The mechanical properties of CFRP tubes were taken from the existing literature. As a result of numerical studies, the specific energy absorption capacity of circular CFRP tubes was found to be most efficient compared to the other tubes.