枯草芽孢杆菌W3.15产生的抗真菌物质抑制尖孢镰刀菌并引发细胞损伤

Q3 Agricultural and Biological Sciences HAYATI Journal of Biosciences Pub Date : 2023-06-12 DOI:10.4308/hjb.30.5.843-854
R. E. Putri, N. R. Mubarik, L. Ambarsari, A. Wahyudi
{"title":"枯草芽孢杆菌W3.15产生的抗真菌物质抑制尖孢镰刀菌并引发细胞损伤","authors":"R. E. Putri, N. R. Mubarik, L. Ambarsari, A. Wahyudi","doi":"10.4308/hjb.30.5.843-854","DOIUrl":null,"url":null,"abstract":"Soybean Fusarium wilt and root rot disease caused by a necrotrophic ascomycete pathogen, F. oxysporum, triggered severe damage to the plant tissues and organs and impacted heavy losses. Biocontrol agents, Bacillus subtilis, were commonly used to produce a broad spectrum of antifungal substances and were gradually used in biocontrol studies for plant disease management. Investigation and determination of the inhibiting mechanism of antifungal substance produced by B. subtilis on F. oxysporum should be done to protect the soybean plant. This study revealed that basal nutrient broth (NB) gives the best antifungal activity. The stationary phase of the bacterial growth curve was obtained on two days of cultivation and showed the maximum antifungal activity against F. oxysporum. Ethyl acetate (EA) extraction of bacterial supernatant generated crude EA extract, which showed half inhibition (IC50) at 306.42 µg/ml obtained from the dose-response regression curve. Post-treatment mycelia of F. oxysporum with bacterial extract were demonstrated as hyphal deformation followed by malondialdehyde (MDA) accumulation. Furthermore, cellular leakage on fungal cells that may be triggered by antifungal compounds from strain W3.15 occurred. Last, the related antifungal compounds were predicted to be epicatechin and benzophenone from the LC-MS/MS analysis of crude EA extract. Accordingly, the biocontrol agent B. subtilis strain W3.15 promises a strong potency for biofungicide development.","PeriodicalId":12927,"journal":{"name":"HAYATI Journal of Biosciences","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antifungal Substances Produced by B. subtilis Strain W3.15 Inhibit the Fusarium oxysporum and Trigger Cellular Damage\",\"authors\":\"R. E. Putri, N. R. Mubarik, L. Ambarsari, A. Wahyudi\",\"doi\":\"10.4308/hjb.30.5.843-854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soybean Fusarium wilt and root rot disease caused by a necrotrophic ascomycete pathogen, F. oxysporum, triggered severe damage to the plant tissues and organs and impacted heavy losses. Biocontrol agents, Bacillus subtilis, were commonly used to produce a broad spectrum of antifungal substances and were gradually used in biocontrol studies for plant disease management. Investigation and determination of the inhibiting mechanism of antifungal substance produced by B. subtilis on F. oxysporum should be done to protect the soybean plant. This study revealed that basal nutrient broth (NB) gives the best antifungal activity. The stationary phase of the bacterial growth curve was obtained on two days of cultivation and showed the maximum antifungal activity against F. oxysporum. Ethyl acetate (EA) extraction of bacterial supernatant generated crude EA extract, which showed half inhibition (IC50) at 306.42 µg/ml obtained from the dose-response regression curve. Post-treatment mycelia of F. oxysporum with bacterial extract were demonstrated as hyphal deformation followed by malondialdehyde (MDA) accumulation. Furthermore, cellular leakage on fungal cells that may be triggered by antifungal compounds from strain W3.15 occurred. Last, the related antifungal compounds were predicted to be epicatechin and benzophenone from the LC-MS/MS analysis of crude EA extract. Accordingly, the biocontrol agent B. subtilis strain W3.15 promises a strong potency for biofungicide development.\",\"PeriodicalId\":12927,\"journal\":{\"name\":\"HAYATI Journal of Biosciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HAYATI Journal of Biosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4308/hjb.30.5.843-854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HAYATI Journal of Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4308/hjb.30.5.843-854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

大豆枯萎根腐病是由一种坏死性子囊菌病原菌F. oxysporum引起的,对植物组织器官造成严重损害,造成重大损失。枯草芽孢杆菌是一种常用的生物防治剂,可产生广谱的抗真菌物质,并逐渐用于植物病害管理的生物防治研究。研究枯草芽孢杆菌产生的抗真菌物质对尖孢镰刀菌的抑制机制是保护大豆植株的重要措施。本研究表明,基础营养液(NB)的抗真菌活性最好。培养第2天获得细菌生长曲线的固定期,对尖孢镰刀菌的抑菌活性最高。细菌上清提取乙酸乙酯(EA)得到的EA粗提物在306.42µg/ml的浓度下具有一半的抑制作用(IC50)。细菌提取物处理后的尖孢镰刀菌菌丝表现为菌丝变形和丙二醛积累。此外,真菌细胞上可能发生由菌株W3.15的抗真菌化合物引发的细胞渗漏。最后,通过色谱-质谱/质谱分析推测其相关抗真菌化合物为表儿茶素和二苯甲酮。因此,枯草芽孢杆菌菌株W3.15具有较强的生物杀菌剂开发潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Antifungal Substances Produced by B. subtilis Strain W3.15 Inhibit the Fusarium oxysporum and Trigger Cellular Damage
Soybean Fusarium wilt and root rot disease caused by a necrotrophic ascomycete pathogen, F. oxysporum, triggered severe damage to the plant tissues and organs and impacted heavy losses. Biocontrol agents, Bacillus subtilis, were commonly used to produce a broad spectrum of antifungal substances and were gradually used in biocontrol studies for plant disease management. Investigation and determination of the inhibiting mechanism of antifungal substance produced by B. subtilis on F. oxysporum should be done to protect the soybean plant. This study revealed that basal nutrient broth (NB) gives the best antifungal activity. The stationary phase of the bacterial growth curve was obtained on two days of cultivation and showed the maximum antifungal activity against F. oxysporum. Ethyl acetate (EA) extraction of bacterial supernatant generated crude EA extract, which showed half inhibition (IC50) at 306.42 µg/ml obtained from the dose-response regression curve. Post-treatment mycelia of F. oxysporum with bacterial extract were demonstrated as hyphal deformation followed by malondialdehyde (MDA) accumulation. Furthermore, cellular leakage on fungal cells that may be triggered by antifungal compounds from strain W3.15 occurred. Last, the related antifungal compounds were predicted to be epicatechin and benzophenone from the LC-MS/MS analysis of crude EA extract. Accordingly, the biocontrol agent B. subtilis strain W3.15 promises a strong potency for biofungicide development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
HAYATI Journal of Biosciences
HAYATI Journal of Biosciences Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
1.10
自引率
0.00%
发文量
75
审稿时长
24 weeks
期刊介绍: HAYATI Journal of Biosciences (HAYATI J Biosci) is an international peer-reviewed and open access journal that publishes significant and important research from all area of biosciences fields such as biodiversity, biosystematics, ecology, physiology, behavior, genetics and biotechnology. All life forms, ranging from microbes, fungi, plants, animals, and human, including virus, are covered by HAYATI J Biosci. HAYATI J Biosci published by Department of Biology, Bogor Agricultural University, Indonesia and the Indonesian Society for Biology. We accept submission from all over the world. Our Editorial Board members are prominent and active international researchers in biosciences fields who ensure efficient, fair, and constructive peer-review process. All accepted articles will be published on payment of an article-processing charge, and will be freely available to all readers with worldwide visibility and coverage.
期刊最新文献
Expression of Immunoglobulin M (IgM) and Immunoglobulin G (IgG) in Normal Wistar Rat Post-Cheral® Administration Genetic Relationship and the Putative Occurrence of A Species Complex Within the Indonesian Calotes (Daudin, 1802) (Squamata, Agamidae) Genus Based on COI Gene Sequences In Silico Study, Design, and Expression of an Intranasal Dual Chimeric Vaccine for Indonesian-Based Norovirus GII-2 and Hepatitis B Potential of Clitoria ternatea L. Extract Towards Insulin Receptor Expression and Marker of Inflammation in Diabetes Mellitus Rats Model Genomics and Phylogeny of Rhodotorula glutinis and Rhodotorula kratochvilovae Isolated from the Northern Peruvian Andes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1