S. Cvijić, Jelisaveta Ignjatović, J. Parojčić, S. Ibrić
{"title":"基于生理的药代动力学/生物药剂学建模在制剂开发中的新兴作用","authors":"S. Cvijić, Jelisaveta Ignjatović, J. Parojčić, S. Ibrić","doi":"10.5937/arhfarm71-32479","DOIUrl":null,"url":null,"abstract":"Computer-based (in silico) modeling & simulation tools have been embraced in different fields of pharmaceutics for a variety of applications. Among these, physiologically-based pharmacokinetic/biopharmaceutics modeling (PBPK/PBBM) emerged as a particularly useful tool in formulation development. PBPK/PBBM facilitated strategies have been increasingly evaluated over the past few years, as demonstrated by several reports from the pharmaceutical industry, and a number of research and review papers on this subject. Also, the leading regulatory authorities have recently issued guidance on the use of PBPK modeling in formulation design. In silico PBPK models can comprise different dosing routes (oral, intraoral, parenteral, inhalation, ocular, dermal etc.), although the majority of published examples refer to modeling of oral drugs performance. In order to facilitate the use of PBPK modeling tools, a couple of companies have launched commercially available software such as GastroPlus™, Simcyp™ PBPK Simulator and PK-Sim®. This paper highlights various application fields of PBPK/PBBM modeling, along with the basic principles, advantages and limitations of this approach, and provides relevant examples to demonstrate the practical utility of modeling & simulation tools in different stages of formulation development.","PeriodicalId":39173,"journal":{"name":"Arhiv za Farmaciju","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The emerging role of physiologically-based pharmacokinetic/biopharmaceutics modeling in formulation development\",\"authors\":\"S. Cvijić, Jelisaveta Ignjatović, J. Parojčić, S. Ibrić\",\"doi\":\"10.5937/arhfarm71-32479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computer-based (in silico) modeling & simulation tools have been embraced in different fields of pharmaceutics for a variety of applications. Among these, physiologically-based pharmacokinetic/biopharmaceutics modeling (PBPK/PBBM) emerged as a particularly useful tool in formulation development. PBPK/PBBM facilitated strategies have been increasingly evaluated over the past few years, as demonstrated by several reports from the pharmaceutical industry, and a number of research and review papers on this subject. Also, the leading regulatory authorities have recently issued guidance on the use of PBPK modeling in formulation design. In silico PBPK models can comprise different dosing routes (oral, intraoral, parenteral, inhalation, ocular, dermal etc.), although the majority of published examples refer to modeling of oral drugs performance. In order to facilitate the use of PBPK modeling tools, a couple of companies have launched commercially available software such as GastroPlus™, Simcyp™ PBPK Simulator and PK-Sim®. This paper highlights various application fields of PBPK/PBBM modeling, along with the basic principles, advantages and limitations of this approach, and provides relevant examples to demonstrate the practical utility of modeling & simulation tools in different stages of formulation development.\",\"PeriodicalId\":39173,\"journal\":{\"name\":\"Arhiv za Farmaciju\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arhiv za Farmaciju\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5937/arhfarm71-32479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arhiv za Farmaciju","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/arhfarm71-32479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
The emerging role of physiologically-based pharmacokinetic/biopharmaceutics modeling in formulation development
Computer-based (in silico) modeling & simulation tools have been embraced in different fields of pharmaceutics for a variety of applications. Among these, physiologically-based pharmacokinetic/biopharmaceutics modeling (PBPK/PBBM) emerged as a particularly useful tool in formulation development. PBPK/PBBM facilitated strategies have been increasingly evaluated over the past few years, as demonstrated by several reports from the pharmaceutical industry, and a number of research and review papers on this subject. Also, the leading regulatory authorities have recently issued guidance on the use of PBPK modeling in formulation design. In silico PBPK models can comprise different dosing routes (oral, intraoral, parenteral, inhalation, ocular, dermal etc.), although the majority of published examples refer to modeling of oral drugs performance. In order to facilitate the use of PBPK modeling tools, a couple of companies have launched commercially available software such as GastroPlus™, Simcyp™ PBPK Simulator and PK-Sim®. This paper highlights various application fields of PBPK/PBBM modeling, along with the basic principles, advantages and limitations of this approach, and provides relevant examples to demonstrate the practical utility of modeling & simulation tools in different stages of formulation development.