高分子微粒载体体外药物释放模拟

Q4 Pharmacology, Toxicology and Pharmaceutics Arhiv za Farmaciju Pub Date : 2022-01-01 DOI:10.5937/arhfarm72-40229
Ljiljana Đekić, A. Ćirić
{"title":"高分子微粒载体体外药物释放模拟","authors":"Ljiljana Đekić, A. Ćirić","doi":"10.5937/arhfarm72-40229","DOIUrl":null,"url":null,"abstract":"Incorporation of active substances in polymeric microparticles (microencapsulation) is an important technological strategy used in the pharmaceutical industry to improve the functionality, quality, safety and/or therapeutic efficiency of pharmaceutical preparations for different routes of administration. The current focus of research in this field is on the encapsulation of small molecules and macromolecules into microparticles based on biocompatible synthetic polymers and biopolymers, such as polypeptides and polysaccharides, in order to achieve preferable drug release kinetics and many other advantages. Diversity in the structure and size of microparticles, choice of polymers, and manufacturing processes, allows for designing a multitude of microcarriers (e.g., monolithic matrix microspheres, hollow microcapsules, water-or oil-core microcapsules, stimulus-sensitive microcapsules), whereby their impact on biopharmaceutical profile of drugs can be manipulated. The results so far indicate that the in vitro drug release kinetics evaluation is one of the key aspects of the microparticle-type carrier characterization, where the application of the mathematical analysis (modeling) of the drug release profiles is an important tool for elucidating drug release mechanisms, as well as for evaluating the influence and optimization of formulation and process parameters in the microencapsulation procedure. The article reviews representative studies in which mathematical modeling of experimentally obtained release data was performed for microencapsulated model drugs with different physicochemical properties, as well as the relevance and potential limitations of this approach.","PeriodicalId":39173,"journal":{"name":"Arhiv za Farmaciju","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling of in vitro drug release from polymeric microparticle carriers\",\"authors\":\"Ljiljana Đekić, A. Ćirić\",\"doi\":\"10.5937/arhfarm72-40229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Incorporation of active substances in polymeric microparticles (microencapsulation) is an important technological strategy used in the pharmaceutical industry to improve the functionality, quality, safety and/or therapeutic efficiency of pharmaceutical preparations for different routes of administration. The current focus of research in this field is on the encapsulation of small molecules and macromolecules into microparticles based on biocompatible synthetic polymers and biopolymers, such as polypeptides and polysaccharides, in order to achieve preferable drug release kinetics and many other advantages. Diversity in the structure and size of microparticles, choice of polymers, and manufacturing processes, allows for designing a multitude of microcarriers (e.g., monolithic matrix microspheres, hollow microcapsules, water-or oil-core microcapsules, stimulus-sensitive microcapsules), whereby their impact on biopharmaceutical profile of drugs can be manipulated. The results so far indicate that the in vitro drug release kinetics evaluation is one of the key aspects of the microparticle-type carrier characterization, where the application of the mathematical analysis (modeling) of the drug release profiles is an important tool for elucidating drug release mechanisms, as well as for evaluating the influence and optimization of formulation and process parameters in the microencapsulation procedure. The article reviews representative studies in which mathematical modeling of experimentally obtained release data was performed for microencapsulated model drugs with different physicochemical properties, as well as the relevance and potential limitations of this approach.\",\"PeriodicalId\":39173,\"journal\":{\"name\":\"Arhiv za Farmaciju\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arhiv za Farmaciju\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5937/arhfarm72-40229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arhiv za Farmaciju","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/arhfarm72-40229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

将活性物质掺入聚合微颗粒(微胶囊)是制药工业中使用的一种重要技术策略,用于改善不同给药途径的药物制剂的功能、质量、安全性和/或治疗效率。目前该领域的研究重点是基于生物相容性合成聚合物和生物聚合物(如多肽和多糖)将小分子和大分子包裹成微粒,以获得良好的药物释放动力学和其他许多优点。微颗粒的结构和大小的多样性、聚合物的选择和制造工艺,允许设计大量的微载体(例如,单片基质微球、空心微胶囊、水或油芯微胶囊、刺激敏感微胶囊),从而可以操纵它们对药物的生物制药特性的影响。结果表明,体外药物释放动力学评价是微颗粒型载体表征的关键方面之一,其中药物释放谱的数学分析(建模)的应用是阐明药物释放机制的重要工具,也是评价微胶囊化过程中处方和工艺参数的影响和优化的重要工具。本文综述了对不同理化性质的微囊化模型药物实验获得的释放数据进行数学建模的代表性研究,以及该方法的相关性和潜在局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling of in vitro drug release from polymeric microparticle carriers
Incorporation of active substances in polymeric microparticles (microencapsulation) is an important technological strategy used in the pharmaceutical industry to improve the functionality, quality, safety and/or therapeutic efficiency of pharmaceutical preparations for different routes of administration. The current focus of research in this field is on the encapsulation of small molecules and macromolecules into microparticles based on biocompatible synthetic polymers and biopolymers, such as polypeptides and polysaccharides, in order to achieve preferable drug release kinetics and many other advantages. Diversity in the structure and size of microparticles, choice of polymers, and manufacturing processes, allows for designing a multitude of microcarriers (e.g., monolithic matrix microspheres, hollow microcapsules, water-or oil-core microcapsules, stimulus-sensitive microcapsules), whereby their impact on biopharmaceutical profile of drugs can be manipulated. The results so far indicate that the in vitro drug release kinetics evaluation is one of the key aspects of the microparticle-type carrier characterization, where the application of the mathematical analysis (modeling) of the drug release profiles is an important tool for elucidating drug release mechanisms, as well as for evaluating the influence and optimization of formulation and process parameters in the microencapsulation procedure. The article reviews representative studies in which mathematical modeling of experimentally obtained release data was performed for microencapsulated model drugs with different physicochemical properties, as well as the relevance and potential limitations of this approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arhiv za Farmaciju
Arhiv za Farmaciju Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
自引率
0.00%
发文量
19
审稿时长
12 weeks
期刊最新文献
The Mediterranean diet and lifestyle Dietary antioxidants and health effects: What are their optimal intakes? Antioxidant activity of plant secondary metabolites Methods for the determination of antioxidant activity of plant extracts in vitro Cardiotoxicity: Importance of biomarkers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1