{"title":"基于实时方向数据的饮用水配网水质建模","authors":"S. Nazarovs, Sandis Dejus, T. Juhna","doi":"10.5194/DWES-5-39-2012","DOIUrl":null,"url":null,"abstract":"Abstract. Modelling of contamination spread and location of a contamination source in a water distribution network is an important task. There are several simulation tools developed, however the significant part of them is based on hydraulic models that need node demands as input data that sometimes may result in false negative results and put users at risk. The paper considers applicability of a real-time flow direction data based model for contaminant transport in a distribution network of a city and evaluates the optimal number of flow direction sensors. Simulation data suggest that the model is applicable for the distribution network of the city of Riga and that the optimal number of sensors in this case is around 200.","PeriodicalId":53581,"journal":{"name":"Drinking Water Engineering and Science","volume":"5 1","pages":"39-45"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5194/DWES-5-39-2012","citationCount":"6","resultStr":"{\"title\":\"Modelling water quality in drinking water distribution networks from real-time direction data\",\"authors\":\"S. Nazarovs, Sandis Dejus, T. Juhna\",\"doi\":\"10.5194/DWES-5-39-2012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Modelling of contamination spread and location of a contamination source in a water distribution network is an important task. There are several simulation tools developed, however the significant part of them is based on hydraulic models that need node demands as input data that sometimes may result in false negative results and put users at risk. The paper considers applicability of a real-time flow direction data based model for contaminant transport in a distribution network of a city and evaluates the optimal number of flow direction sensors. Simulation data suggest that the model is applicable for the distribution network of the city of Riga and that the optimal number of sensors in this case is around 200.\",\"PeriodicalId\":53581,\"journal\":{\"name\":\"Drinking Water Engineering and Science\",\"volume\":\"5 1\",\"pages\":\"39-45\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.5194/DWES-5-39-2012\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drinking Water Engineering and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/DWES-5-39-2012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drinking Water Engineering and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/DWES-5-39-2012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Modelling water quality in drinking water distribution networks from real-time direction data
Abstract. Modelling of contamination spread and location of a contamination source in a water distribution network is an important task. There are several simulation tools developed, however the significant part of them is based on hydraulic models that need node demands as input data that sometimes may result in false negative results and put users at risk. The paper considers applicability of a real-time flow direction data based model for contaminant transport in a distribution network of a city and evaluates the optimal number of flow direction sensors. Simulation data suggest that the model is applicable for the distribution network of the city of Riga and that the optimal number of sensors in this case is around 200.