城市发展对印度古吉拉特邦三个城市土地覆盖变化的影响分析

IF 1.2 Q3 GEOGRAPHY Geographica Pannonica Pub Date : 2022-01-01 DOI:10.5937/gp26-39440
Alpesh Patel, A. Suthar
{"title":"城市发展对印度古吉拉特邦三个城市土地覆盖变化的影响分析","authors":"Alpesh Patel, A. Suthar","doi":"10.5937/gp26-39440","DOIUrl":null,"url":null,"abstract":"Urbanization generally serves as a key navigator of the economic growth and development of the country. There is a need for fast and accurate urban planning to accommodate more and more people in the city area. Remote sensing technology has been used for planning the expansion and design of city areas. A novel machine learning (ML) classifier formed by combining AdaBoost and extra trees algorithm have been investigated for change detection in the urban area of three cities in the Gujarat region of India. Using Indian Remote Sensing (IRS) Resourcesat-2 LISS IV satellite images, the performance of the object-based AdaBoosted extra trees classifier (ABETC) in terms of overall accuracy (OA) and kappa coefficient (KC) for urban area change detection was compared to benchmarked object-based algorithms. As the first step in object-based classification (OBC), the Shepherd segmentation algorithm was used to segment satellite images. For all three cities, the object-based ABETC demonstrated the highest efficiency when compared to conventional classifiers. The rise in the built-up area of Ahmedabad city has been noted by 87.39 sq km from the year 2011 to 2020 showing the urban development of the city. This increase in the built-up area of Ahmedabad was compensated by the depletion of 30.26 sq. km. vegetation area, and 57.13 sq. km. of open land class. The built-up area of Vadodara and Rajkot city has been enlarged by 17.24 sq km and 6.79 sq km respectively. The highest OA of 96.04% and KC of 0.94 has been noted for a satellite image of Vadodara city with a novel object based ABETC algorithm.","PeriodicalId":44646,"journal":{"name":"Geographica Pannonica","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of urban development on land cover changes of three cities of Gujarat state, India\",\"authors\":\"Alpesh Patel, A. Suthar\",\"doi\":\"10.5937/gp26-39440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Urbanization generally serves as a key navigator of the economic growth and development of the country. There is a need for fast and accurate urban planning to accommodate more and more people in the city area. Remote sensing technology has been used for planning the expansion and design of city areas. A novel machine learning (ML) classifier formed by combining AdaBoost and extra trees algorithm have been investigated for change detection in the urban area of three cities in the Gujarat region of India. Using Indian Remote Sensing (IRS) Resourcesat-2 LISS IV satellite images, the performance of the object-based AdaBoosted extra trees classifier (ABETC) in terms of overall accuracy (OA) and kappa coefficient (KC) for urban area change detection was compared to benchmarked object-based algorithms. As the first step in object-based classification (OBC), the Shepherd segmentation algorithm was used to segment satellite images. For all three cities, the object-based ABETC demonstrated the highest efficiency when compared to conventional classifiers. The rise in the built-up area of Ahmedabad city has been noted by 87.39 sq km from the year 2011 to 2020 showing the urban development of the city. This increase in the built-up area of Ahmedabad was compensated by the depletion of 30.26 sq. km. vegetation area, and 57.13 sq. km. of open land class. The built-up area of Vadodara and Rajkot city has been enlarged by 17.24 sq km and 6.79 sq km respectively. The highest OA of 96.04% and KC of 0.94 has been noted for a satellite image of Vadodara city with a novel object based ABETC algorithm.\",\"PeriodicalId\":44646,\"journal\":{\"name\":\"Geographica Pannonica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geographica Pannonica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5937/gp26-39440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geographica Pannonica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/gp26-39440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

城市化通常是一个国家经济增长和发展的关键领航员。有必要快速和准确的城市规划,以适应越来越多的人在城市地区。遥感技术已被用于城市区域的规划、扩展和设计。结合AdaBoost和额外树算法形成了一种新的机器学习(ML)分类器,用于印度古吉拉特邦地区三个城市的城市区域的变化检测。利用印度遥感(IRS) Resourcesat-2 LISS IV卫星图像,比较了基于目标的AdaBoosted额外树分类器(ABETC)在城市区域变化检测的总体精度(OA)和kappa系数(KC)方面的性能。作为基于目标分类(OBC)的第一步,使用Shepherd分割算法对卫星图像进行分割。对于这三个城市,与传统分类器相比,基于对象的ABETC显示出最高的效率。艾哈迈达巴德市的建成区面积从2011年到2020年增加了87.39平方公里,显示了该市的城市发展。艾哈迈达巴德建成区面积的增加弥补了30.26平方的减少。公里。植被面积57.13平方。公里。属于空地阶级。瓦多达拉和拉果德市的建成区面积分别扩大了17.24平方公里和6.79平方公里。基于ABETC算法的瓦多达拉市卫星影像的OA最高,为96.04%,KC最高,为0.94。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of urban development on land cover changes of three cities of Gujarat state, India
Urbanization generally serves as a key navigator of the economic growth and development of the country. There is a need for fast and accurate urban planning to accommodate more and more people in the city area. Remote sensing technology has been used for planning the expansion and design of city areas. A novel machine learning (ML) classifier formed by combining AdaBoost and extra trees algorithm have been investigated for change detection in the urban area of three cities in the Gujarat region of India. Using Indian Remote Sensing (IRS) Resourcesat-2 LISS IV satellite images, the performance of the object-based AdaBoosted extra trees classifier (ABETC) in terms of overall accuracy (OA) and kappa coefficient (KC) for urban area change detection was compared to benchmarked object-based algorithms. As the first step in object-based classification (OBC), the Shepherd segmentation algorithm was used to segment satellite images. For all three cities, the object-based ABETC demonstrated the highest efficiency when compared to conventional classifiers. The rise in the built-up area of Ahmedabad city has been noted by 87.39 sq km from the year 2011 to 2020 showing the urban development of the city. This increase in the built-up area of Ahmedabad was compensated by the depletion of 30.26 sq. km. vegetation area, and 57.13 sq. km. of open land class. The built-up area of Vadodara and Rajkot city has been enlarged by 17.24 sq km and 6.79 sq km respectively. The highest OA of 96.04% and KC of 0.94 has been noted for a satellite image of Vadodara city with a novel object based ABETC algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
11.10%
发文量
8
审稿时长
4 weeks
期刊最新文献
Networks, agriculture and geography: How business connections of agricultural enterprises shape the connection of settlements in Western Hungary Thermal resistance of clothing in human biometeorological models Excess mortality and Covid-19 deaths: Preliminary data from Serbia and comparison with European experience Flood hazard risk assessment based on multi-criteria spatial analysis GIS as input for spatial planning policies in Tegal Regency, Indonesia Scientometric analysis-based review of drought indices for assessment and monitoring of drought
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1