基于直方图梯度增强分类树分类器的1986 - 2020年匈牙利基于像素和物体的土地覆盖制图和变化检测

IF 1.2 Q3 GEOGRAPHY Geographica Pannonica Pub Date : 2022-01-01 DOI:10.5937/gp26-37720
András Gudmann, L. Mucsi
{"title":"基于直方图梯度增强分类树分类器的1986 - 2020年匈牙利基于像素和物体的土地覆盖制图和变化检测","authors":"András Gudmann, L. Mucsi","doi":"10.5937/gp26-37720","DOIUrl":null,"url":null,"abstract":"The large-scale pixel-based land use/land cover classification is a challenging task, which depends on many circumstances. This study aims to create LULC maps with the nomenclature of Coordination of Information on the Environment (CORINE) Land Cover (CLC) for years when the CLC databases are not available. Furthermore, testing the predicted maps for land use changes in the last 30 years in Hungary. Histogram-based gradient boosting classification tree (HGBCT) classifier was tested at classification. According to the results, the classifier, with the use of texture variance and landscape metrics is capable to generate accurate predicted maps, and the comparison of the predicted maps provides a detailed image of the land use changes.","PeriodicalId":44646,"journal":{"name":"Geographica Pannonica","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pixel and object-based land cover mapping and change detection from 1986 to 2020 for Hungary using histogram-based gradient boosting classification tree classifier\",\"authors\":\"András Gudmann, L. Mucsi\",\"doi\":\"10.5937/gp26-37720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The large-scale pixel-based land use/land cover classification is a challenging task, which depends on many circumstances. This study aims to create LULC maps with the nomenclature of Coordination of Information on the Environment (CORINE) Land Cover (CLC) for years when the CLC databases are not available. Furthermore, testing the predicted maps for land use changes in the last 30 years in Hungary. Histogram-based gradient boosting classification tree (HGBCT) classifier was tested at classification. According to the results, the classifier, with the use of texture variance and landscape metrics is capable to generate accurate predicted maps, and the comparison of the predicted maps provides a detailed image of the land use changes.\",\"PeriodicalId\":44646,\"journal\":{\"name\":\"Geographica Pannonica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geographica Pannonica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5937/gp26-37720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geographica Pannonica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/gp26-37720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 1

摘要

基于像元的大尺度土地利用/土地覆盖分类是一项具有挑战性的任务,它取决于多种情况。本研究的目的是在环境信息协调(CORINE)土地覆盖(CLC)数据库不可用的年份,以CLC的命名法创建LULC地图。此外,对匈牙利过去30年土地利用变化的预测地图进行了测试。对基于直方图的梯度增强分类树(HGBCT)分类器进行了分类测试。结果表明,该分类器能够利用纹理方差和景观指标生成准确的预测图,预测图的对比提供了土地利用变化的详细图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pixel and object-based land cover mapping and change detection from 1986 to 2020 for Hungary using histogram-based gradient boosting classification tree classifier
The large-scale pixel-based land use/land cover classification is a challenging task, which depends on many circumstances. This study aims to create LULC maps with the nomenclature of Coordination of Information on the Environment (CORINE) Land Cover (CLC) for years when the CLC databases are not available. Furthermore, testing the predicted maps for land use changes in the last 30 years in Hungary. Histogram-based gradient boosting classification tree (HGBCT) classifier was tested at classification. According to the results, the classifier, with the use of texture variance and landscape metrics is capable to generate accurate predicted maps, and the comparison of the predicted maps provides a detailed image of the land use changes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
11.10%
发文量
8
审稿时长
4 weeks
期刊最新文献
Networks, agriculture and geography: How business connections of agricultural enterprises shape the connection of settlements in Western Hungary Thermal resistance of clothing in human biometeorological models Excess mortality and Covid-19 deaths: Preliminary data from Serbia and comparison with European experience Flood hazard risk assessment based on multi-criteria spatial analysis GIS as input for spatial planning policies in Tegal Regency, Indonesia Scientometric analysis-based review of drought indices for assessment and monitoring of drought
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1