{"title":"任意解离程度下h2x型气体分子(X = O或S)中组分的a(H)和a(X)化学活性","authors":"N. Shohoji","doi":"10.5923/J.IJMC.20120201.02","DOIUrl":null,"url":null,"abstract":"Chemical activities, a(X) and a(H), of constituents, X and H, in H2X type gas molecules (X = S or O) were evaluated as functions of temperature T and extent α of dissociation adapting a thermodynamic analysis procedure developed by Katsura for interpreting enhanced a(N) and a(H) in NH3 gas molecules with suppressed α by flowing. Present analysis results showed that both H2S and H2O gas molecules are chemically rather inert even at comparatively low α unlike nitro- gen-family tri-hydrides XH3 that were proved to yield high chemical activity of each constituent in a state being away from thermodynamic equilibrium. The parameter α referring to the extent of dissociation of HnX type gas molecules appears to be a significant parameter in evaluating the chemical activities, a(X) and a(H), in the HnX gas molecules that are remained non-dissociated.","PeriodicalId":14124,"journal":{"name":"International Journal of Mobile Communications","volume":"2 1","pages":"10-15"},"PeriodicalIF":0.7000,"publicationDate":"2012-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Chemical Activities, a(H) and a(X), of Constituents in H 2 X Type Gas Molecules (X = O or S) at Arbitrary Degree of Dissociation\",\"authors\":\"N. Shohoji\",\"doi\":\"10.5923/J.IJMC.20120201.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chemical activities, a(X) and a(H), of constituents, X and H, in H2X type gas molecules (X = S or O) were evaluated as functions of temperature T and extent α of dissociation adapting a thermodynamic analysis procedure developed by Katsura for interpreting enhanced a(N) and a(H) in NH3 gas molecules with suppressed α by flowing. Present analysis results showed that both H2S and H2O gas molecules are chemically rather inert even at comparatively low α unlike nitro- gen-family tri-hydrides XH3 that were proved to yield high chemical activity of each constituent in a state being away from thermodynamic equilibrium. The parameter α referring to the extent of dissociation of HnX type gas molecules appears to be a significant parameter in evaluating the chemical activities, a(X) and a(H), in the HnX gas molecules that are remained non-dissociated.\",\"PeriodicalId\":14124,\"journal\":{\"name\":\"International Journal of Mobile Communications\",\"volume\":\"2 1\",\"pages\":\"10-15\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2012-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mobile Communications\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.5923/J.IJMC.20120201.02\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMMUNICATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mobile Communications","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.5923/J.IJMC.20120201.02","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMMUNICATION","Score":null,"Total":0}
Chemical Activities, a(H) and a(X), of Constituents in H 2 X Type Gas Molecules (X = O or S) at Arbitrary Degree of Dissociation
Chemical activities, a(X) and a(H), of constituents, X and H, in H2X type gas molecules (X = S or O) were evaluated as functions of temperature T and extent α of dissociation adapting a thermodynamic analysis procedure developed by Katsura for interpreting enhanced a(N) and a(H) in NH3 gas molecules with suppressed α by flowing. Present analysis results showed that both H2S and H2O gas molecules are chemically rather inert even at comparatively low α unlike nitro- gen-family tri-hydrides XH3 that were proved to yield high chemical activity of each constituent in a state being away from thermodynamic equilibrium. The parameter α referring to the extent of dissociation of HnX type gas molecules appears to be a significant parameter in evaluating the chemical activities, a(X) and a(H), in the HnX gas molecules that are remained non-dissociated.
期刊介绍:
The world of mobile communications is not a trend, but a phenomenon. IJMC, a fully refereed journal, publishes articles that present current practice and theory of mobile communications, mobile technology, and mobile commerce applications. Topics covered include Integrated mobile marketing communications Wireless advertising/CRM Telematics, pervasive computing Incoming/outgoing wireless links Location management Diffusion, security, efficacy, interaction/integration Metric mobile business enterprises PDAs in services delivery M-/u-business models, m-/u-commerce Digital office, groupware, roomware Mobile ad hoc networking, wireless information assurance Nomadic/portable communications Cross-cultural mobile communications Teaching mobile communication applications Mobile/handheld devices in the classroom, tele-learning.