碱活化混凝土在硫酸侵蚀下的耐久性性能

IF 1.4 4区 工程技术 Revista de la Construccion Pub Date : 2023-01-01 DOI:10.7764/rdlc.22.1.16
A. Niş, Melis Bilenler Altundal
{"title":"碱活化混凝土在硫酸侵蚀下的耐久性性能","authors":"A. Niş, Melis Bilenler Altundal","doi":"10.7764/rdlc.22.1.16","DOIUrl":null,"url":null,"abstract":"In this research, chemical durability performances of the alkali-activated slag (AAS), 50% ground granulated blast furnace slag and 50% fly ash (AFS), ordinary Portland cement (OPC), and geopolymer (GPC) concretes were investigated thoroughly under 5% sulfuric acid attack. All alkali-activated concrete specimens were produced considering the minimum binder content of 360 kg/m3 and the maximum alkali activator to binder ratio of 0.45 according to the XA3 environment given in EN 206-1 standard for OPC concrete. The visual inspection, weight change and compressive strength tests were performed to understand the influence of sulfuric acid attack on the resulting performances. Also, scanning electron microscope (SEM) and energy dispersive X-ray spectrometry (EDS) analyses were performed to examine the morphological variations in micro-scale. The mechanical performances and durability of alkali-activated concretes were also compared to the OPC concrete for structural utilization. The results revealed that AFS specimens showed the best durability, while GPC specimens exhibited the poorest durability. SEM/EDS results pointed out that AFS specimens exhibited denser and less porous microstructure, and the reductions in Al/Si and Ca/Si atomic ratios were observed under 5% sulfuric acid attack. In contrast, GPC specimens showed less dense and porous microstructure, and high aluminum leaching was observed. In addition, the wider interconnected macro cracks and high calcium leaching were observed in the AAS samples under 5% sulfuric acid attack. Finally, the AAS and AFS specimens can be utilized in structural applications, while GPC specimens should not be used with a minimum binder content proposed by EN 206-1 standard.","PeriodicalId":54473,"journal":{"name":"Revista de la Construccion","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Durability performance of alkali-activated concretes exposed to sulfuric acid attack\",\"authors\":\"A. Niş, Melis Bilenler Altundal\",\"doi\":\"10.7764/rdlc.22.1.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, chemical durability performances of the alkali-activated slag (AAS), 50% ground granulated blast furnace slag and 50% fly ash (AFS), ordinary Portland cement (OPC), and geopolymer (GPC) concretes were investigated thoroughly under 5% sulfuric acid attack. All alkali-activated concrete specimens were produced considering the minimum binder content of 360 kg/m3 and the maximum alkali activator to binder ratio of 0.45 according to the XA3 environment given in EN 206-1 standard for OPC concrete. The visual inspection, weight change and compressive strength tests were performed to understand the influence of sulfuric acid attack on the resulting performances. Also, scanning electron microscope (SEM) and energy dispersive X-ray spectrometry (EDS) analyses were performed to examine the morphological variations in micro-scale. The mechanical performances and durability of alkali-activated concretes were also compared to the OPC concrete for structural utilization. The results revealed that AFS specimens showed the best durability, while GPC specimens exhibited the poorest durability. SEM/EDS results pointed out that AFS specimens exhibited denser and less porous microstructure, and the reductions in Al/Si and Ca/Si atomic ratios were observed under 5% sulfuric acid attack. In contrast, GPC specimens showed less dense and porous microstructure, and high aluminum leaching was observed. In addition, the wider interconnected macro cracks and high calcium leaching were observed in the AAS samples under 5% sulfuric acid attack. Finally, the AAS and AFS specimens can be utilized in structural applications, while GPC specimens should not be used with a minimum binder content proposed by EN 206-1 standard.\",\"PeriodicalId\":54473,\"journal\":{\"name\":\"Revista de la Construccion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista de la Construccion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.7764/rdlc.22.1.16\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de la Construccion","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.7764/rdlc.22.1.16","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究了碱活性矿渣(AAS)、50%磨粒矿渣+ 50%粉煤灰(AFS)、普通硅酸盐水泥(OPC)和地聚合物混凝土(GPC)在5%硫酸侵蚀下的化学耐久性。所有碱活化混凝土试样均按照EN 206-1 OPC混凝土标准中给出的XA3环境,考虑最小粘结剂含量为360 kg/m3,最大碱活化剂与粘结剂之比为0.45。通过目测、重量变化和抗压强度试验来了解硫酸侵蚀对所得性能的影响。利用扫描电镜(SEM)和能谱分析(EDS)分析了微尺度下的形态变化。并将碱活化混凝土的力学性能和耐久性与OPC混凝土进行了比较。结果表明,AFS试件的耐久性最好,GPC试件的耐久性最差。SEM/EDS结果表明,AFS试样的微观结构更致密,孔隙较少,在5%硫酸腐蚀下,Al/Si和Ca/Si原子比降低。相比之下,GPC试样的微观结构致密且多孔,铝浸出率较高。此外,在5%硫酸侵蚀下,AAS样品的宏观裂纹相互连接更宽,钙浸出率更高。最后,AAS和AFS试样可用于结构应用,而GPC试样不应使用EN 206-1标准提出的最低粘结剂含量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Durability performance of alkali-activated concretes exposed to sulfuric acid attack
In this research, chemical durability performances of the alkali-activated slag (AAS), 50% ground granulated blast furnace slag and 50% fly ash (AFS), ordinary Portland cement (OPC), and geopolymer (GPC) concretes were investigated thoroughly under 5% sulfuric acid attack. All alkali-activated concrete specimens were produced considering the minimum binder content of 360 kg/m3 and the maximum alkali activator to binder ratio of 0.45 according to the XA3 environment given in EN 206-1 standard for OPC concrete. The visual inspection, weight change and compressive strength tests were performed to understand the influence of sulfuric acid attack on the resulting performances. Also, scanning electron microscope (SEM) and energy dispersive X-ray spectrometry (EDS) analyses were performed to examine the morphological variations in micro-scale. The mechanical performances and durability of alkali-activated concretes were also compared to the OPC concrete for structural utilization. The results revealed that AFS specimens showed the best durability, while GPC specimens exhibited the poorest durability. SEM/EDS results pointed out that AFS specimens exhibited denser and less porous microstructure, and the reductions in Al/Si and Ca/Si atomic ratios were observed under 5% sulfuric acid attack. In contrast, GPC specimens showed less dense and porous microstructure, and high aluminum leaching was observed. In addition, the wider interconnected macro cracks and high calcium leaching were observed in the AAS samples under 5% sulfuric acid attack. Finally, the AAS and AFS specimens can be utilized in structural applications, while GPC specimens should not be used with a minimum binder content proposed by EN 206-1 standard.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista de la Construccion
Revista de la Construccion 工程技术-工程:土木
CiteScore
2.30
自引率
21.40%
发文量
0
期刊介绍: The Journal of Construction is aimed at professionals, constructors, academics, researchers, companies, architects, engineers, and anyone who wishes to expand and update their knowledge about construction. We therefore invite all researchers, academics, and professionals to send their contributions for assessment and possible publication in this journal. The publications are free of publication charges. OBJECTIVES The objectives of the Journal of Construction are: 1. To disseminate new knowledge in all areas related to construction (Building, Civil Works, Materials, Business, Education, etc.). 2. To provide professionals in the area with material for discussion to refresh and update their knowledge. 3. To disseminate new applied technologies in construction nationally and internationally. 4. To provide national and foreign academics with an internationally endorsed medium in which to share their knowledge and debate the topics raised.
期刊最新文献
Durability of concrete exposed to combined freeze-thaw, sulfate, and acid attacks after two years Effect of different ashes from biomass olive pomace on the mechanical and fire properties of gypsum-based materials Incorporating vegetal fibers for sustainable sandy soil Eco-efficient analysis of thermal regulations applied to thermal envelopes of a dwelling in Chile Durability performance of alkali-activated concretes exposed to sulfuric acid attack
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1