Won-Je Kim, J. Rhee, Jong-Jae Yi, Bong‐Jin Lee, W. Son
{"title":"增强化学位移分析用于蛋白质二级结构预测","authors":"Won-Je Kim, J. Rhee, Jong-Jae Yi, Bong‐Jin Lee, W. Son","doi":"10.6564/JKMRS.2014.18.1.036","DOIUrl":null,"url":null,"abstract":"Predicting secondary structure of protein through assigned backbone chemical shifts has been used widely because of its convenience and flexibility. In spite of its usefulness, chemical shift based analysis has some defects including isotopic shifts and solvent interaction. Here, it is shown that corrected chemical shift analysis for secondary structure of protein. It is included chemical shift correction through consideration of deuterium isotopic effect and calculate chemical shift index using probability-based methods. Enhanced method was applied successfully to one of the proteins from Mycobacterium tuberculosis. It is suggested that correction of chemical shift analysis could increase accuracy of secondary structure prediction of protein and small molecule in solution.","PeriodicalId":17414,"journal":{"name":"Journal of the Korean magnetic resonance society","volume":"18 1","pages":"36-40"},"PeriodicalIF":0.4000,"publicationDate":"2014-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhanced Chemical Shift Analysis for Secondary Structure prediction of protein\",\"authors\":\"Won-Je Kim, J. Rhee, Jong-Jae Yi, Bong‐Jin Lee, W. Son\",\"doi\":\"10.6564/JKMRS.2014.18.1.036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting secondary structure of protein through assigned backbone chemical shifts has been used widely because of its convenience and flexibility. In spite of its usefulness, chemical shift based analysis has some defects including isotopic shifts and solvent interaction. Here, it is shown that corrected chemical shift analysis for secondary structure of protein. It is included chemical shift correction through consideration of deuterium isotopic effect and calculate chemical shift index using probability-based methods. Enhanced method was applied successfully to one of the proteins from Mycobacterium tuberculosis. It is suggested that correction of chemical shift analysis could increase accuracy of secondary structure prediction of protein and small molecule in solution.\",\"PeriodicalId\":17414,\"journal\":{\"name\":\"Journal of the Korean magnetic resonance society\",\"volume\":\"18 1\",\"pages\":\"36-40\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2014-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean magnetic resonance society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6564/JKMRS.2014.18.1.036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean magnetic resonance society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6564/JKMRS.2014.18.1.036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Enhanced Chemical Shift Analysis for Secondary Structure prediction of protein
Predicting secondary structure of protein through assigned backbone chemical shifts has been used widely because of its convenience and flexibility. In spite of its usefulness, chemical shift based analysis has some defects including isotopic shifts and solvent interaction. Here, it is shown that corrected chemical shift analysis for secondary structure of protein. It is included chemical shift correction through consideration of deuterium isotopic effect and calculate chemical shift index using probability-based methods. Enhanced method was applied successfully to one of the proteins from Mycobacterium tuberculosis. It is suggested that correction of chemical shift analysis could increase accuracy of secondary structure prediction of protein and small molecule in solution.