62kda蛋白Hsp31骨架配位的预氘化和核磁共振实验

IF 0.4 Q4 BIOCHEMICAL RESEARCH METHODS Journal of the Korean magnetic resonance society Pub Date : 2015-12-20 DOI:10.6564/JKMRS.2015.19.3.112
Jihong Kim, Dongwook Choi, Chankyu Park, K. Ryu
{"title":"62kda蛋白Hsp31骨架配位的预氘化和核磁共振实验","authors":"Jihong Kim, Dongwook Choi, Chankyu Park, K. Ryu","doi":"10.6564/JKMRS.2015.19.3.112","DOIUrl":null,"url":null,"abstract":"Hsp31 protein is one of the members of DJ-1 superfamily proteins and has a dimeric structure of which molecular weight (MW) is 62 kDa. The mutation of DJ-1 is closely related to early onset of Parkinson’s disease. Hsp31 displays Zn +2 -binding activity and was first reported to be a holding chaperone in E. coli . Its additional glyoxalase III active has recently been characterized. Moreover, an incubation at 60 ° C induces Hsp31 protein to form a high MW oligomer (HMW) in vitro , which accomplishes an elevated holding chaperone activity. The NMR technique is elegant method to probe any local or global structural change of a protein in responses to environmental stresses (heat, pH, and metal). Although the presence of the backbone chemical shifts (bbCSs) is a prerequisite for detailed NMR analyses of the structural changes, general HSQC-based triple resonance experiments could not be used for 62 kDa Hsp31 protein. Here, we prepared the per-deuterated Hsp31 and performed the TROSY-based triple resonance experiments for the bbCSs assignment. Here, detailed processes of per-deuteration and the NMR experiments are described for other similar NMR approaches.","PeriodicalId":17414,"journal":{"name":"Journal of the Korean magnetic resonance society","volume":"51 1","pages":"112-118"},"PeriodicalIF":0.4000,"publicationDate":"2015-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Per-deuteration and NMR experiments for the backbone assignment of 62 kDa protein, Hsp31\",\"authors\":\"Jihong Kim, Dongwook Choi, Chankyu Park, K. Ryu\",\"doi\":\"10.6564/JKMRS.2015.19.3.112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hsp31 protein is one of the members of DJ-1 superfamily proteins and has a dimeric structure of which molecular weight (MW) is 62 kDa. The mutation of DJ-1 is closely related to early onset of Parkinson’s disease. Hsp31 displays Zn +2 -binding activity and was first reported to be a holding chaperone in E. coli . Its additional glyoxalase III active has recently been characterized. Moreover, an incubation at 60 ° C induces Hsp31 protein to form a high MW oligomer (HMW) in vitro , which accomplishes an elevated holding chaperone activity. The NMR technique is elegant method to probe any local or global structural change of a protein in responses to environmental stresses (heat, pH, and metal). Although the presence of the backbone chemical shifts (bbCSs) is a prerequisite for detailed NMR analyses of the structural changes, general HSQC-based triple resonance experiments could not be used for 62 kDa Hsp31 protein. Here, we prepared the per-deuterated Hsp31 and performed the TROSY-based triple resonance experiments for the bbCSs assignment. Here, detailed processes of per-deuteration and the NMR experiments are described for other similar NMR approaches.\",\"PeriodicalId\":17414,\"journal\":{\"name\":\"Journal of the Korean magnetic resonance society\",\"volume\":\"51 1\",\"pages\":\"112-118\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2015-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean magnetic resonance society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6564/JKMRS.2015.19.3.112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean magnetic resonance society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6564/JKMRS.2015.19.3.112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 3

摘要

Hsp31蛋白是DJ-1超家族蛋白的成员之一,具有二聚体结构,分子量为62 kDa。DJ-1基因突变与帕金森病的早期发病密切相关。Hsp31具有Zn +2结合活性,首次被报道为大肠杆菌中的固定伴侣蛋白。最近对其附加的乙二醛酶III活性进行了表征。此外,在60°C的孵育下,诱导Hsp31蛋白在体外形成高分子量低聚物(HMW),从而实现了保持伴侣活性的提高。核磁共振技术是一种优雅的方法,可以探测蛋白质在响应环境压力(热、pH和金属)时的任何局部或全局结构变化。虽然主干化学位移(bbCSs)的存在是详细分析结构变化的先决条件,但一般基于hsqc的三重共振实验不能用于62 kDa的Hsp31蛋白。在此,我们制备了预氘化Hsp31,并进行了基于trosy的三重共振实验。在这里,详细的过程和核磁共振实验描述了其他类似的核磁共振方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Per-deuteration and NMR experiments for the backbone assignment of 62 kDa protein, Hsp31
Hsp31 protein is one of the members of DJ-1 superfamily proteins and has a dimeric structure of which molecular weight (MW) is 62 kDa. The mutation of DJ-1 is closely related to early onset of Parkinson’s disease. Hsp31 displays Zn +2 -binding activity and was first reported to be a holding chaperone in E. coli . Its additional glyoxalase III active has recently been characterized. Moreover, an incubation at 60 ° C induces Hsp31 protein to form a high MW oligomer (HMW) in vitro , which accomplishes an elevated holding chaperone activity. The NMR technique is elegant method to probe any local or global structural change of a protein in responses to environmental stresses (heat, pH, and metal). Although the presence of the backbone chemical shifts (bbCSs) is a prerequisite for detailed NMR analyses of the structural changes, general HSQC-based triple resonance experiments could not be used for 62 kDa Hsp31 protein. Here, we prepared the per-deuterated Hsp31 and performed the TROSY-based triple resonance experiments for the bbCSs assignment. Here, detailed processes of per-deuteration and the NMR experiments are described for other similar NMR approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Korean magnetic resonance society
Journal of the Korean magnetic resonance society BIOCHEMICAL RESEARCH METHODS-
自引率
66.70%
发文量
0
期刊最新文献
Backbone NMR chemical shift assignment of transthyretin Backbone NMR assignments of the FAS1-3/FAS1-4 domains of transforming growth factor-beta-induced protein The effects of Mozart's music on metabolic response upon stress Purity assessment using quantitative NMR: establishment of SI traceability in organic analysis Backbone NMR Assignments of WW2 domain from human AIP4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1