研究RNA温度计的核磁共振方法

IF 0.4 Q4 BIOCHEMICAL RESEARCH METHODS Journal of the Korean magnetic resonance society Pub Date : 2015-12-20 DOI:10.6564/JKMRS.2015.19.3.143
Won-Je Kim, Nak-Kyoon Kim
{"title":"研究RNA温度计的核磁共振方法","authors":"Won-Je Kim, Nak-Kyoon Kim","doi":"10.6564/JKMRS.2015.19.3.143","DOIUrl":null,"url":null,"abstract":"Abstract In some pathogenic bacteria, there are RNA thermometers, which regulate the production of virulence associated factors or heat shock proteins depending on temperature changes. Like a riboswitches, RNA thermometers are located in the 5’-untranslated region and involved translational gene regulatory mechanism. RNA thermometers block the ribosome-binding site and start codon area under the 37℃ living systems. within their secondary structure. After bacterial infection, increased the temperature in the host causes conformations changes of RNA, and the ribosome-binding site is exposed for translational initiation. Because structural differences between open and closed forms of RNA thermometers are mainly mediated by base pairing changes, NMR spectroscopy is a very useful method to study these thermodynamically changing RNA structure. In this review, we briefly provide a fundamental function of RNA thermometers, and also suggest a proper NMR experiments for studying RNA thermometers.","PeriodicalId":17414,"journal":{"name":"Journal of the Korean magnetic resonance society","volume":"19 1","pages":"143-148"},"PeriodicalIF":0.4000,"publicationDate":"2015-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Proper NMR methods for studying RNA thermometers\",\"authors\":\"Won-Je Kim, Nak-Kyoon Kim\",\"doi\":\"10.6564/JKMRS.2015.19.3.143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In some pathogenic bacteria, there are RNA thermometers, which regulate the production of virulence associated factors or heat shock proteins depending on temperature changes. Like a riboswitches, RNA thermometers are located in the 5’-untranslated region and involved translational gene regulatory mechanism. RNA thermometers block the ribosome-binding site and start codon area under the 37℃ living systems. within their secondary structure. After bacterial infection, increased the temperature in the host causes conformations changes of RNA, and the ribosome-binding site is exposed for translational initiation. Because structural differences between open and closed forms of RNA thermometers are mainly mediated by base pairing changes, NMR spectroscopy is a very useful method to study these thermodynamically changing RNA structure. In this review, we briefly provide a fundamental function of RNA thermometers, and also suggest a proper NMR experiments for studying RNA thermometers.\",\"PeriodicalId\":17414,\"journal\":{\"name\":\"Journal of the Korean magnetic resonance society\",\"volume\":\"19 1\",\"pages\":\"143-148\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2015-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean magnetic resonance society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6564/JKMRS.2015.19.3.143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean magnetic resonance society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6564/JKMRS.2015.19.3.143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 1

摘要

在一些致病菌中,存在RNA温度计,它根据温度变化调节毒力相关因子或热休克蛋白的产生。与核糖开关一样,RNA温度计位于5 ' -非翻译区,涉及翻译基因调控机制。RNA温度计阻断核糖体结合位点,启动密码子区。在它们的二级结构中。细菌感染后,宿主体内温度升高引起RNA构象改变,核糖体结合位点暴露,进行翻译起始。由于开放和封闭形式的RNA温度计的结构差异主要是由碱基对变化介导的,因此核磁共振波谱是研究这些热力学变化的RNA结构的非常有用的方法。本文简要介绍了RNA温度计的基本功能,并提出了RNA温度计研究的核磁共振实验方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Proper NMR methods for studying RNA thermometers
Abstract In some pathogenic bacteria, there are RNA thermometers, which regulate the production of virulence associated factors or heat shock proteins depending on temperature changes. Like a riboswitches, RNA thermometers are located in the 5’-untranslated region and involved translational gene regulatory mechanism. RNA thermometers block the ribosome-binding site and start codon area under the 37℃ living systems. within their secondary structure. After bacterial infection, increased the temperature in the host causes conformations changes of RNA, and the ribosome-binding site is exposed for translational initiation. Because structural differences between open and closed forms of RNA thermometers are mainly mediated by base pairing changes, NMR spectroscopy is a very useful method to study these thermodynamically changing RNA structure. In this review, we briefly provide a fundamental function of RNA thermometers, and also suggest a proper NMR experiments for studying RNA thermometers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Korean magnetic resonance society
Journal of the Korean magnetic resonance society BIOCHEMICAL RESEARCH METHODS-
自引率
66.70%
发文量
0
期刊最新文献
Backbone NMR chemical shift assignment of transthyretin Backbone NMR assignments of the FAS1-3/FAS1-4 domains of transforming growth factor-beta-induced protein The effects of Mozart's music on metabolic response upon stress Purity assessment using quantitative NMR: establishment of SI traceability in organic analysis Backbone NMR Assignments of WW2 domain from human AIP4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1