印度北方邦旱涝灾害对耕地影响的地理空间分析及其与人口迁移的关系

Zubairul Islam, Sudhir Kumar Singh
{"title":"印度北方邦旱涝灾害对耕地影响的地理空间分析及其与人口迁移的关系","authors":"Zubairul Islam, Sudhir Kumar Singh","doi":"10.7494/geom.2021.15.4.117","DOIUrl":null,"url":null,"abstract":"The main objective was to explore the connection between flood and drought hazards and their impact on crop land and human migration. The Flood and Drought effect on Cropland Index (FDCI), hot spot analysis and the Global Regression Analysis method was applied for the identification of the relationship between human migration and flood and drought hazards. The spatial pattern and hot and cold spots of FDCI, spatial autocorrelation and Getis-OrdGi* statistic techniques were used respectively. The FDCI was taken as an explanatory variable and human migration was taken as a dependent variable in the environment of the geographically weighted regression (GWR) model which was applied to measure the impact of flood and drought hazards on human migration. FDCI suggests a z-score of 4.9, which shows that the impact of flood and drought frequency on crop land is highly clustered. In the case of the hot spots analysis, out of seventy districts in Uttar Pradesh twenty-one were classified as hot spot and eight were classified as cold spots with a confidence level of 90 to 99%. Hot spot indicate maximum and cold spots show minimum impact of flood and drought hazards on crop land. The impact of flood and drought hazards on human migration show that there are fourteen districts where migration out is far more than predicted while there are ten districts where migration out is far lower.","PeriodicalId":36672,"journal":{"name":"Geomatics and Environmental Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Geospatial Analysis of the Impact of Flood and Drought Hazards on Crop Land and Its Relationship with Human Migration at the District Level in Uttar Pradesh, India\",\"authors\":\"Zubairul Islam, Sudhir Kumar Singh\",\"doi\":\"10.7494/geom.2021.15.4.117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objective was to explore the connection between flood and drought hazards and their impact on crop land and human migration. The Flood and Drought effect on Cropland Index (FDCI), hot spot analysis and the Global Regression Analysis method was applied for the identification of the relationship between human migration and flood and drought hazards. The spatial pattern and hot and cold spots of FDCI, spatial autocorrelation and Getis-OrdGi* statistic techniques were used respectively. The FDCI was taken as an explanatory variable and human migration was taken as a dependent variable in the environment of the geographically weighted regression (GWR) model which was applied to measure the impact of flood and drought hazards on human migration. FDCI suggests a z-score of 4.9, which shows that the impact of flood and drought frequency on crop land is highly clustered. In the case of the hot spots analysis, out of seventy districts in Uttar Pradesh twenty-one were classified as hot spot and eight were classified as cold spots with a confidence level of 90 to 99%. Hot spot indicate maximum and cold spots show minimum impact of flood and drought hazards on crop land. The impact of flood and drought hazards on human migration show that there are fourteen districts where migration out is far more than predicted while there are ten districts where migration out is far lower.\",\"PeriodicalId\":36672,\"journal\":{\"name\":\"Geomatics and Environmental Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomatics and Environmental Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/geom.2021.15.4.117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomatics and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/geom.2021.15.4.117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 2

摘要

主要目的是探讨洪涝和干旱灾害之间的联系及其对农田和人类迁移的影响。应用水旱影响耕地指数(FDCI)、热点分析和全球回归分析方法,对人类迁移与水旱灾害的关系进行了识别。分别采用空间自相关和Getis-OrdGi*统计技术分析FDCI的空间格局和冷热点。采用地理加权回归(GWR)模型,在环境中以FDCI为解释变量,以人类迁移为因变量来衡量水旱灾害对人类迁移的影响。FDCI的z值为4.9,表明旱涝频率对耕地的影响是高度聚集的。在热点分析的情况下,在Uttar Pradesh的70个地区中,21个被归类为热点,8个被归类为冷点,置信度为90至99%。热点区表明旱涝灾害对农田的影响最大,冷区表明旱涝灾害对农田的影响最小。洪涝灾害和干旱灾害对人口迁移的影响表明,有14个地区的人口迁移远高于预期,而10个地区的人口迁移远低于预期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Geospatial Analysis of the Impact of Flood and Drought Hazards on Crop Land and Its Relationship with Human Migration at the District Level in Uttar Pradesh, India
The main objective was to explore the connection between flood and drought hazards and their impact on crop land and human migration. The Flood and Drought effect on Cropland Index (FDCI), hot spot analysis and the Global Regression Analysis method was applied for the identification of the relationship between human migration and flood and drought hazards. The spatial pattern and hot and cold spots of FDCI, spatial autocorrelation and Getis-OrdGi* statistic techniques were used respectively. The FDCI was taken as an explanatory variable and human migration was taken as a dependent variable in the environment of the geographically weighted regression (GWR) model which was applied to measure the impact of flood and drought hazards on human migration. FDCI suggests a z-score of 4.9, which shows that the impact of flood and drought frequency on crop land is highly clustered. In the case of the hot spots analysis, out of seventy districts in Uttar Pradesh twenty-one were classified as hot spot and eight were classified as cold spots with a confidence level of 90 to 99%. Hot spot indicate maximum and cold spots show minimum impact of flood and drought hazards on crop land. The impact of flood and drought hazards on human migration show that there are fourteen districts where migration out is far more than predicted while there are ten districts where migration out is far lower.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geomatics and Environmental Engineering
Geomatics and Environmental Engineering Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
2.30
自引率
0.00%
发文量
27
期刊最新文献
Improving Traffic-noise-mitigation Strategies with LiDAR-based 3D Tree-canopy Analysis Apartment Rental Market in Border Cities of Poland and Ukraine Comparison of Statistical and Machine-Learning Model for Analyzing Landslide Susceptibility in Sumedang Area, Indonesia Sustainability Analysis of Domestic Raw Water Supply in Bandung City of Indonesia Estimation of Natural Uranium and Its Risk-Assessment in Groundwater of Bangalore Urban District of Karnataka, India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1